Display options
Share it on

J Basic Clin Pharm. 2012 Dec;4(1):2-9. doi: 10.4103/0976-0105.109398.

Formulation and evaluation of controlled porosity osmotic pump for oral delivery of ketorolac.

Journal of basic and clinical pharmacy

Fatima Sanjeri Dasankoppa, Mahesh Ningangowdar, Hasanpasha Sholapur


  1. Department of Pharmaceutics, K.L.E.U's College of Pharmacy, Vidyanagar, Hubli, Karnataka, India.
  2. Department of Pharmacognosy, K.L.E.U's College of Pharmacy, Vidyanagar, Hubli, Karnataka, India.

PMID: 24808662 PMCID: PMC3894729 DOI: 10.4103/0976-0105.109398


BACKGROUND: The osmotic drug delivery systems suitable for oral administration typically consist of a compressed tablet core that is coated with a semipermeable membrane that has an orifice drilled on it by means of a laser beam or mechanical drill. Ketorolac is a nonsteroidal agent with powerful analgesic. Oral bioavailability of ketorolac was reported to be 90% with very low hepatic first-pass elimination; the biological half-life of 4-6 hours requires frequent administration to maintain the therapeutic effect.

AIM: The aim of the current study was to design a controlled porosity osmotic pump (CPOP)based drug delivery system for controlled release of an NSAID agent, ketorolac tromethamine, which is expected to improve patient compliance due to reduced frequency; it also eliminates the need for complicated and expensive laser drilling and maintain continuous therapeutic concentration.

DESIGN: The CPOP was designed containing pore-forming water-soluble additives in the coating membrane, which after coming in contact with water, dissolve, resulting in an in situ formation of a micro porous structure.

MATERIALS AND METHODS: The effect of different formulation variables, namely level of pore former (PVP), plasticizer (dibutyl phthalate) in the membrane, and membrane weight gain were studied.

RESULTS AND CONCLUSION: Drug release was inversely proportional to the membrane weight but directly related to the initial concentration of pore former (PVP) in the membrane. Drug release was independent of pH and agitational intensity, but dependent on the osmotic pressure of the release media. Based on the in vitro dissolution profile, formulation F3C1 (containing 0.5 g PVP and 1 g dibutyl phthalate in coating membrane) exhibited Peppas kinetic with Fickian diffusion-controlled release mechanism with a drug release of 93.67% in 12 hours and hence it was selected as optimized formulation. SEM studies showed the formation of pores in the membrane. The formulations were stable after 3 months of accelerated stability studies. CPOP was designed for effective administration of drugs for prolonged period of time.

Keywords: Controlled porosity osmotic pump; ketorolac tromethamine; peppas kinetics; pore former; scanning electron microscopy; stability study


  1. Eur J Pharm Biopharm. 2008 Feb;68(2):289-97 - PubMed
  2. J Control Release. 2004 Jan 8;94(1):75-89 - PubMed
  3. Int J Pharm. 2007 Mar 6;332(1-2):115-24 - PubMed
  4. AAPS PharmSciTech. 2006 Aug 04;7(3):64 - PubMed
  5. Indian J Pharm Sci. 2008 Nov;70(6):745-53 - PubMed
  6. AAPS PharmSciTech. 2007 Jul 13;8(3):E53 - PubMed
  7. Eur J Pharm Biopharm. 2004 May;57(3):513-25 - PubMed
  8. J Control Release. 2003 Apr 14;89(1):5-18 - PubMed
  9. Int J Pharm. 2003 Sep 16;263(1-2):9-24 - PubMed

Publication Types