Display options
Share it on

Worm. 2015 Feb 09;4(1):e1008903. doi: 10.1080/21624054.2015.1008903. eCollection 2015.

Proteomic identification of germline proteins in Caenorhabditis elegans.

Worm

B Elizabeth Turner, Sophia M Basecke, Grace C Bazan, Eric S Dodge, Cassy M Haire, Dylan J Heussman, Chelsey L Johnson, Chelsea K Mukai, Adrianna M Naccarati, Sunny-June Norton, Jennifer R Sato, Chihara O Talavera, Michael V Wade, Kenneth J Hillers

Affiliations

  1. Department of Chemistry and Biochemistry; California Polytechnic State University ; San Luis Obispo, CA USA ; ; Department of Biological Sciences; California Polytechnic State University ; San Luis Obispo, CA USA.
  2. Department of Biological Sciences; California Polytechnic State University ; San Luis Obispo, CA USA.
  3. Department of Chemistry and Biochemistry; California Polytechnic State University ; San Luis Obispo, CA USA ;

PMID: 26435885 PMCID: PMC4590026 DOI: 10.1080/21624054.2015.1008903

Abstract

Sexual reproduction involves fusion of 2 haploid gametes to form diploid offspring with genetic contributions from both parents. Gamete formation represents a unique developmental program involving the action of numerous germline-specific proteins. In an attempt to identify novel proteins involved in reproduction and embryonic development, we have carried out a proteomic characterization of the process in Caenorhabditis elegans. To identify candidate proteins, we used 2D gel electrophoresis (2DGE) to compare protein abundance in nucleus-enriched extracts from wild-type C. elegans, and in extracts from mutant worms with greatly reduced gonads (glp-4(bn2) worms reared at 25°C); 84 proteins whose abundance correlated with germline presence were identified. To validate candidates, we used feeding RNAi to deplete candidate proteins, and looked for reduction in fertility and/or germline cytological defects. Of 20 candidates so screened for involvement in fertility, depletion of 13 (65%) caused a significant reduction in fertility, and 6 (30%) resulted in sterility (<5 % of wild-type fertility). Five of the 13 proteins with demonstrated roles in fertility have not previously been implicated in germline function. The high frequency of defects observed after RNAi depletion of candidate proteins suggests that this approach is effective at identifying germline proteins, thus contributing to our understanding of this complex organ.

Keywords: 2D gel electrophoresis; RNA interference; comparative proteomics; fertility; gametogenesis; meiosis

References

  1. Methods Mol Biol. 2009;557:77-97 - PubMed
  2. Proteomics. 2010 Feb;10(3):506-19 - PubMed
  3. Proteomics. 2010 Dec;10(24):4401-14 - PubMed
  4. Development. 2004 Jan;131(2):311-23 - PubMed
  5. Mol Biosyst. 2009 Dec;5(12):1512-26 - PubMed
  6. Science. 2004 Jul 2;305(5680):61-6 - PubMed
  7. WormBook. 2006 Feb 11;:1-11 - PubMed
  8. Mol Biol Cell. 2006 Jul;17(7):3051-61 - PubMed
  9. Dev Biol. 2010 Aug 15;344(2):1011-25 - PubMed
  10. Nucleic Acids Res. 2014 Jan;42(Database issue):D789-93 - PubMed
  11. Nature. 2006 Sep 7;443(7107):101-5 - PubMed
  12. Domest Anim Endocrinol. 2013 Jan;44(1):26-35 - PubMed
  13. Genetics. 2010 Sep;186(1):45-58 - PubMed
  14. Genes Dev. 1997 Oct 15;11(20):2600-21 - PubMed
  15. J Exp Biol. 2012 Nov 15;215(Pt 22):3905-16 - PubMed
  16. J Proteome Res. 2011 May 6;10(5):2300-5 - PubMed
  17. Dev Biol. 1977 Mar;56(1):110-56 - PubMed
  18. BMC Genomics. 2009 May 09;10:213 - PubMed
  19. PLoS Biol. 2003 Oct;1(1):E12 - PubMed
  20. PLoS Genet. 2013 May;9(5):e1003497 - PubMed
  21. Dev Biol. 2005 Mar 15;279(2):322-35 - PubMed
  22. Genetics. 2002 Sep;162(1):113-28 - PubMed
  23. Dev Biol. 1999 Jan 1;205(1):111-28 - PubMed
  24. Cell. 2011 Apr 29;145(3):470-82 - PubMed
  25. Nat Cell Biol. 2008 May;10 (5):556-66 - PubMed
  26. PLoS Biol. 2009 Mar 3;7(3):e48 - PubMed
  27. Cell. 2005 Oct 7;123(1):119-32 - PubMed
  28. Mol Cell. 2000 Sep;6(3):605-16 - PubMed
  29. DNA Cell Biol. 1990 Apr;9(3):177-91 - PubMed
  30. Annu Rev Cell Dev Biol. 2004;20:525-58 - PubMed
  31. Cell. 2003 Feb 21;112(4):423-40 - PubMed
  32. Cell. 2001 Sep 21;106(6):647-50 - PubMed
  33. Methods. 2003 Aug;30(4):313-21 - PubMed
  34. Curr Biol. 2009 Jan 13;19(1):9-19 - PubMed
  35. Nat Biotechnol. 2003 Aug;21(8):927-31 - PubMed
  36. Nat Protoc. 2009;4(1):44-57 - PubMed
  37. Nat Rev Genet. 2001 Apr;2(4):280-91 - PubMed
  38. PLoS Genet. 2006 May;2(5):e74 - PubMed
  39. Appl Microbiol Biotechnol. 2007 Oct;76(6):1223-43 - PubMed
  40. Genes Dev. 2005 Apr 1;19(7):782-7 - PubMed
  41. Proteomics. 2004 Aug;4(8):2283-95 - PubMed
  42. WormBook. 2005 Sep 01;:1-4 - PubMed
  43. Development. 1992 Nov;116(3):755-66 - PubMed
  44. Nature. 2003 Jan 16;421(6920):231-7 - PubMed

Publication Types