Display options
Share it on

Sci Rep. 2017 Oct 23;7(1):13792. doi: 10.1038/s41598-017-12642-7.

Site-selective spectroscopy with depth resolution using resonant x-ray reflectometry.

Scientific reports

J E Hamann-Borrero, S Macke, B Gray, M Kareev, E Schierle, S Partzsch, M Zwiebler, U Treske, A Koitzsch, B Büchner, J W Freeland, J Chakhalian, J Geck

Affiliations

  1. Leibniz Institute for Solid State and Materials Research, IFW Dresden, 01171, Dresden, Germany. [email protected].
  2. Quantum Matter Institute, University of British Columbia, 2355 East Mall, Vancouver, V6T 1Z4, Canada.
  3. Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569, Stuttgart, Germany.
  4. Department of Physics, University of Arkansas, Fayetteville, Arkansas, 70701, USA.
  5. Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey, 08854, USA.
  6. Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, D-12489, Berlin, Germany.
  7. Leibniz Institute for Solid State and Materials Research, IFW Dresden, 01171, Dresden, Germany.
  8. Institut für Festkörper- und Materialphysik, TU Dresden, D-01062, Dresden, Germany.
  9. Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois, 60439, USA.
  10. Institut für Festkörper- und Materialphysik, TU Dresden, D-01062, Dresden, Germany. [email protected].

PMID: 29061996 PMCID: PMC5653850 DOI: 10.1038/s41598-017-12642-7

Abstract

Combining dissimilar transition metal oxides (TMOs) into artificial heterostructures enables to create electronic interface systems with new electronic properties that do not exist in bulk. A detailed understanding of how such interfaces can be used to tailor physical properties requires characterization techniques capable to yield interface sensitive spectroscopic information with monolayer resolution. In this regard resonant x-ray reflectivity (RXR) provides a unique experimental tool to achieve exactly this. It yields the element specific electronic depth profiles in a non-destructive manner. Here, using a YBa

References

  1. Phys Rev Lett. 2007 Nov 9;99(19):196106 - PubMed
  2. Phys Rev Lett. 1992 Nov 16;69(20):2967-2970 - PubMed
  3. Nat Mater. 2011 Mar;10(3):189-93 - PubMed
  4. Phys Rev Lett. 1992 Apr 20;68(16):2543-2546 - PubMed
  5. Phys Rev B Condens Matter. 1992 Feb 15;45(7):3309-3318 - PubMed
  6. Science. 2007 Nov 16;318(5853):1114-7 - PubMed
  7. Phys Rev B Condens Matter. 1995 Apr 1;51(13):8529-8542 - PubMed
  8. J Phys Condens Matter. 2014 Sep 10;26(36):363201 - PubMed
  9. Nature. 2004 Jan 29;427(6973):423-6 - PubMed
  10. Nature. 2008 Oct 9;455(7214):782-5 - PubMed
  11. Phys Rev B Condens Matter. 1992 Mar 1;45(9):5107-5110 - PubMed
  12. Nat Mater. 2012 Jan 24;11(2):92-4 - PubMed
  13. Nat Mater. 2012 Jan 24;11(2):103-13 - PubMed
  14. Sci Rep. 2016 Sep 15;6:33184 - PubMed
  15. Adv Mater. 2014 Oct;26(38):6554-9 - PubMed

Publication Types