Display options
Share it on

PeerJ. 2017 Oct 11;5:e3915. doi: 10.7717/peerj.3915. eCollection 2017.

Pulmonary transcriptomic responses indicate a dual role of inflammation in pneumonia development and viral clearance during 2009 pandemic influenza infection.

PeerJ

Raquel Almansa, Pamela Martínez-Orellana, Lucía Rico, Verónica Iglesias, Alicia Ortega, Beatriz Vidaña, Jorge Martínez, Ana Expósito, María Montoya, Jesús F Bermejo-Martin

Affiliations

  1. Laboratory of Biomedical Research in Sepsis (BIOSEPSIS), Hospital Clínico Universitario de Valladolid, Instituto de Estudios de Ciencias de la Salud de Castilla y León (IECSCYL), Valladolid, Spain.
  2. Centre de Recerca en Sanitat Animal (CReSA), Universitat Autónoma de Barcelona, IRTA, Barcelona, Spain.
  3. Department of Pathology, Animal and Plant Health Agency (APHA), Surrey, UK.
  4. Departament de Sanitat i d'Anatomia Animals, Universitat Autónoma de Barcelona, Barcelona, Spain.
  5. African Swine Fever Virus Immunology Group, The Pirbright Institute, Surrey, UK.

PMID: 29038764 PMCID: PMC5640978 DOI: 10.7717/peerj.3915

Abstract

BACKGROUND: The interaction between influenza virus and the host response to infection clearly plays an important role in determining the outcome of infection. While much is known on the participation of inflammation on the pathogenesis of severe A (H1N1) pandemic 09-influenza virus, its role in the course of non-fatal pneumonia has not been fully addressed.

METHODS: A systems biology approach was used to define gene expression profiles, histology and viral dynamics in the lungs of healthy immune-competent mice with pneumonia caused by a human influenza A (H1N1) pdm09 virus, which successfully resolved the infection.

RESULTS: Viral infection activated a marked pro-inflammatory response at the lung level paralleling the emergence of histological changes. Cellular immune response and cytokine signaling were the two signaling pathway categories more representative of our analysis. This transcriptome response was associated to viral clearance, and its resolution was accompanied by resolution of histopathology.

DISCUSSION: These findings suggest a dual role of pulmonary inflammation in viral clearance and development of pneumonia during non-fatal infection caused by the 2009 pandemic influenza virus. Understanding the dynamics of the host's transcriptomic and virological changes over the course of the infection caused by A (H1N1) pdm09 virus may help identifying the immune response profiles associated with an effective response against influenza virus.

Keywords: Gene expression; Immune response; Inflammation; Influenza; Lung; Mice model

Conflict of interest statement

The authors declare that they have no competing interests.

References

  1. Eur J Immunol. 2013 Oct;43(10):2613-25 - PubMed
  2. Front Microbiol. 2016 Aug 03;7:1167 - PubMed
  3. Crit Care. 2010;14(6):R203 - PubMed
  4. Arthritis Care Res (Hoboken). 2015 Jul;67(7):905-12 - PubMed
  5. N Engl J Med. 2009 Nov 12;361(20):1935-44 - PubMed
  6. J Gen Virol. 2010 Dec;91(Pt 12):2898-906 - PubMed
  7. Euro Surveill. 2009 Jun 04;14 (22):null - PubMed
  8. J Virol. 2011 Nov;85(22):11626-37 - PubMed
  9. BMC Infect Dis. 2011 Aug 31;11:232 - PubMed
  10. J Immunol. 2008 Apr 15;180(8):5625-35 - PubMed
  11. Clin Infect Dis. 2010 Mar 15;50(6):850-9 - PubMed
  12. Biochem Pharmacol. 2015 Sep 1;97(1):16-26 - PubMed
  13. Autoimmunity. 2011 Nov;44(7):562-70 - PubMed
  14. Enferm Infecc Microbiol Clin. 2012 Oct;30 Suppl 4:18-24 - PubMed
  15. PLoS One. 2012;7(6):e38214 - PubMed
  16. Vet Res. 2010 Sep-Oct;41(5):74 - PubMed
  17. Cell. 2009 Dec 24;139(7):1255-67 - PubMed
  18. Crit Care. 2014 Jun 06;18(3):433 - PubMed
  19. Crit Care. 2011;15(5):448 - PubMed
  20. Immunol Rev. 2016 Jan;269(1):162-74 - PubMed
  21. Sci Rep. 2013;3:1601 - PubMed
  22. Vet Res. 2014;45:85 - PubMed
  23. PLoS One. 2012;7(7):e41169 - PubMed
  24. Nat Med. 2006 Oct;12(10):1203-7 - PubMed
  25. Cell Mol Immunol. 2016 Jan;13(1):3-10 - PubMed
  26. J Infect. 2015 May;70(5):445-56 - PubMed
  27. J Infect Dis. 2009 Aug 15;200(4):492-500 - PubMed
  28. Virology. 2010 Jun 5;401(2):257-65 - PubMed
  29. Virol J. 2015 Mar 26;12:48 - PubMed
  30. Nature. 2009 Aug 20;460(7258):1021-5 - PubMed
  31. Crit Care. 2009;13(6):R201 - PubMed
  32. Front Immunol. 2015 Jul 20;6:361 - PubMed
  33. Immunol Rev. 2008 Dec;226:57-79 - PubMed
  34. J Virol. 2012 Oct;86(20):11115-27 - PubMed
  35. J Virol. 2014 Sep;88(18):10556-68 - PubMed
  36. Nat Rev Immunol. 2014 May;14(5):315-28 - PubMed
  37. Pathogens. 2017 Jun 10;6(2): - PubMed
  38. Infect Chemother. 2013 Mar;45(1):11-21 - PubMed
  39. J Virol. 2013 Feb;87(4):1957-66 - PubMed
  40. Viruses. 2016 Apr 12;8(4):96 - PubMed
  41. Clin Exp Immunol. 2009 Aug;157(2):209-15 - PubMed
  42. J Med Virol. 2001 Mar;63(3):242-6 - PubMed
  43. Crit Care. 2010;14(5):R167 - PubMed
  44. PLoS One. 2012;7(5):e37104 - PubMed
  45. J Virol. 2012 Jul;86(13):7192-206 - PubMed

Publication Types