Display options
Share it on

Bioengineering (Basel). 2018 Mar 22;5(2). doi: 10.3390/bioengineering5020026.

Towards Control of a Transhumeral Prosthesis with EEG Signals.

Bioengineering (Basel, Switzerland)

D S V Bandara, Jumpei Arata, Kazuo Kiguchi

Affiliations

  1. System Engineering Laboratory, Department of Mechanical Engineering, Kyushu University, Fukuoka 819-0395, Japan. [email protected].
  2. System Engineering Laboratory, Department of Mechanical Engineering, Kyushu University, Fukuoka 819-0395, Japan. [email protected].
  3. System Engineering Laboratory, Department of Mechanical Engineering, Kyushu University, Fukuoka 819-0395, Japan. [email protected].

PMID: 29565293 PMCID: PMC6027267 DOI: 10.3390/bioengineering5020026

Abstract

Robotic prostheses are expected to allow amputees greater freedom and mobility. However, available options to control transhumeral prostheses are reduced with increasing amputation level. In addition, for electromyography-based control of prostheses, the residual muscles alone cannot generate sufficiently different signals for accurate distal arm function. Thus, controlling a multi-degree of freedom (DoF) transhumeral prosthesis is challenging with currently available techniques. In this paper, an electroencephalogram (EEG)-based hierarchical two-stage approach is proposed to achieve multi-DoF control of a transhumeral prosthesis. In the proposed method, the motion intention for arm reaching or hand lifting is identified using classifiers trained with motion-related EEG features. For this purpose, neural network and

Keywords: brain computer interface; electroencephalography; motion intention; transhumeral prosthesis; wearable robot

Conflict of interest statement

The authors declare no conflict of interest.

References

  1. Prosthet Orthot Int. 2014 Dec;38(6):492-504 - PubMed
  2. IEEE Trans Inf Technol Biomed. 2010 Mar;14(2):301-8 - PubMed
  3. Clin Neurophysiol. 1999 Nov;110(11):1842-57 - PubMed
  4. Med Biol Eng Comput. 2008 Jun;46(6):529-39 - PubMed
  5. J Neural Eng. 2011 Dec;8(6):066009 - PubMed
  6. Cortex. 2012 Jun;48(6):746-57 - PubMed
  7. IEEE Trans Neural Syst Rehabil Eng. 2016 Aug;24(8):837-46 - PubMed
  8. Front Neurosci. 2016 Mar 31;10:122 - PubMed
  9. IEEE Trans Neural Syst Rehabil Eng. 2017 Oct;25(10):1832-1842 - PubMed
  10. J Electromyogr Kinesiol. 2017 Aug;35:86-94 - PubMed
  11. Neuroscientist. 2010 Aug;16(4):388-407 - PubMed
  12. Med Eng Phys. 2017 Oct;48:131-141 - PubMed
  13. PM R. 2011 Jan;3(1):55-67 - PubMed
  14. IEEE Trans Neural Syst Rehabil Eng. 2006 Jun;14(2):190-3 - PubMed
  15. J Neurosci. 1990 Jul;10(7):2039-58 - PubMed
  16. JAMA. 2009 Feb 11;301(6):619-28 - PubMed
  17. IEEE J Biomed Health Inform. 2015 Mar;19(2):478-485 - PubMed
  18. IEEE Trans Neural Syst Rehabil Eng. 2018 Mar;26(3):675-686 - PubMed

Publication Types