Display options
Share it on

Zookeys. 2018 May 10;(757):85-152. doi: 10.3897/zookeys.757.24453. eCollection 2018.

Filling the BINs of life: Report of an amphibian and reptile survey of the Tanintharyi (Tenasserim) Region of Myanmar, with DNA barcode data.

ZooKeys

Daniel G Mulcahy, Justin L Lee, Aryeh H Miller, Mia Chand, Myint Kyaw Thura, George R Zug

Affiliations

  1. Global Genome Initiative, National Museum of Natural History, Smithsonian Institution, 10th & Constitution Ave., Washington, DC, 20013 USA.
  2. College of Computer, Mathematical and Natural Sciences, University of Maryland, College Park Maryland, 20742 USA.
  3. Department of Biology, University of North Carolina Asheville, Asheville, NC 28804 USA.
  4. College of William & Mary, Williamsburg, Virginia, 23187 USA.
  5. Myanmar Environment Sustainable Conservation (MESC), Yangon, Myanmar.
  6. Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, 20013 USA.

PMID: 29780268 PMCID: PMC5958176 DOI: 10.3897/zookeys.757.24453

Abstract

Despite threats of species extinctions, taxonomic crises, and technological advances in genomics and natural history database informatics, we are still distant from cataloguing all of the species of life on earth. Amphibians and reptiles are no exceptions; in fact new species are described nearly every day and many species face possible extinction. The number of described species continues to climb as new areas of the world are explored and as species complexes are examined more thoroughly. The use of DNA barcoding provides a mechanism for rapidly estimating the number of species at a given site and has the potential to record all of the species of life on Earth. Though DNA barcoding has its caveats, it can be useful to estimate the number of species in a more systematic and efficient manner, to be followed in combination with more traditional, morphology-based identifications and species descriptions. Herein, we report the results of a voucher-based herpetological expedition to the Tanintharyi (Tenasserim) Region of Myanmar, enhanced with DNA barcode data. Our main surveys took place in the currently proposed Tanintharyi National Park. We combine our results with photographs and observational data from the Chaung-nauk-pyan forest reserve. Additionally, we provide the first checklist of amphibians and reptiles of the region, with species based on the literature and museum. Amphibians, anurans in particular, are one of the most poorly known groups of vertebrates in terms of taxonomy and the number of known species, particularly in Southeast Asia. Our rapid-assessment program combined with DNA barcoding and use of Barcode Index Numbers (BINs) of voucher specimens reveals the depth of taxonomic diversity in the southern Tanintharyi herpetofauna even though only a third of the potential amphibians and reptiles were seen. A total of 51 putative species (one caecilian, 25 frogs, 13 lizards, 10 snakes, and two turtles) were detected, several of which represent potentially undescribed species. Several of these species were detected by DNA barcode data alone. Furthermore, five species were recorded for the first time in Myanmar, two amphibians (Ichthyophis cf. kohtaoensis and

Keywords: Anura; Gymnophiona; Southeast Asia; Squamata; Testudines; Thai-Malay Peninsula; Thailand; biodiversity; natural history; species diversity

References

  1. Mol Phylogenet Evol. 2000 Jun;15(3):452-61 - PubMed
  2. Proc Biol Sci. 2003 Feb 7;270(1512):313-21 - PubMed
  3. Proc Biol Sci. 2003 Aug 7;270 Suppl 1:S96-9 - PubMed
  4. Science. 2004 Dec 3;306(5702):1783-6 - PubMed
  5. Mol Phylogenet Evol. 2005 Dec;37(3):733-42 - PubMed
  6. Zoolog Sci. 2005 Jul;22(7):809-14 - PubMed
  7. Mol Phylogenet Evol. 2006 Mar;38(3):659-66 - PubMed
  8. Zoolog Sci. 2006 Aug;23(8):727-32 - PubMed
  9. Biol Lett. 2006 Sep 22;2(3):470-4 - PubMed
  10. Zoolog Sci. 2007 Jun;24(6):547-62 - PubMed
  11. Zoolog Sci. 2008 Nov;25(11):1084-105 - PubMed
  12. Zoolog Sci. 2010 May;27(5):386-95 - PubMed
  13. Mol Ecol Resour. 2009 Sep;9(5):1311-21 - PubMed
  14. Mol Phylogenet Evol. 2011 Oct;61(1):167-76 - PubMed
  15. Mol Phylogenet Evol. 2011 Dec;61(3):784-800 - PubMed
  16. PLoS One. 2011;6(11):e26874 - PubMed
  17. Zoolog Sci. 2012 Mar;29(3):162-72 - PubMed
  18. Mol Phylogenet Evol. 2012 Jun;63(3):714-23 - PubMed
  19. BMC Evol Biol. 2012 Dec 10;12:241 - PubMed
  20. Mol Ecol Resour. 2013 Nov;13(6):969-75 - PubMed
  21. Science. 2013 Jan 25;339(6118):413-6 - PubMed
  22. PLoS One. 2013 Jul 08;8(7):e66213 - PubMed
  23. Evolution. 2013 Sep;67(9):2631-46 - PubMed
  24. Mol Phylogenet Evol. 2014 Feb;71:201-13 - PubMed
  25. Trends Ecol Evol. 2014 Apr;29(4):187-8 - PubMed
  26. Zootaxa. 2014 Apr 02;3785:45-58 - PubMed
  27. Syst Biol. 2014 Nov;63(6):1005-9 - PubMed
  28. Zootaxa. 2014 Dec 24;3900(4):569-80 - PubMed
  29. Zootaxa. 2014 Nov 27;3887(5):583-99 - PubMed
  30. Zootaxa. 2015 Jan 16;3911(1):106-18 - PubMed
  31. C R Biol. 2015 May;338(5):351-61 - PubMed
  32. Mol Phylogenet Evol. 2015 Sep;90:176-92 - PubMed
  33. Zootaxa. 2013;3702:101-23 - PubMed
  34. Zootaxa. 2015 Dec 18;4058(4):471-98 - PubMed
  35. Biol Lett. 2016 Jan;12(1):20150807 - PubMed
  36. PLoS One. 2016 Mar 02;11(3):e0149597 - PubMed
  37. Zootaxa. 2016 Mar 16;4092(3):414-20 - PubMed
  38. Zootaxa. 2016 Mar 21;4093(2):181-200 - PubMed
  39. Zootaxa. 2016 Jan 15;4066(3):331-42 - PubMed
  40. PeerJ. 2016 Oct 11;4:e2528 - PubMed
  41. PeerJ. 2017 Jan 24;5:e2884 - PubMed
  42. Zookeys. 2017 Feb 17;(657):141-156 - PubMed
  43. PLoS One. 2017 Apr 12;12(4):e0174432 - PubMed
  44. Nature. 2017 May 31;546(7656):25-27 - PubMed
  45. Mol Ecol. 2017 Oct;26(20):5435-5450 - PubMed
  46. Nat Ecol Evol. 2017 Nov;1(11):1590-1591 - PubMed
  47. PhytoKeys. 2017 Oct 12;(88):119-122 - PubMed
  48. PLoS One. 2017 Nov 13;12(11):e0187283 - PubMed
  49. Zootaxa. 2017 Nov 13;4347(2):301-315 - PubMed
  50. PLoS One. 2018 Mar 14;13(3):e0192766 - PubMed
  51. Mol Biol Evol. 1997 Jan;14(1):91-104 - PubMed

Publication Types