Display options
Share it on

Transl Cancer Res. 2017 Jul;6:S900-S913. doi: 10.21037/tcr.2017.06.19.

Genetically engineered mouse models for studying radiation biology.

Translational cancer research

Katherine D Castle, Mark Chen, Amy J Wisdom, David G Kirsch

Affiliations

  1. Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, USA.
  2. Medical Scientist Training Program, Duke University Medical Center, Durham, North Carolina, USA.
  3. Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, USA.

PMID: 30733931 PMCID: PMC6363345 DOI: 10.21037/tcr.2017.06.19

Abstract

Genetically engineered mouse models (GEMMs) are valuable research tools that have transformed our understanding of cancer. The first GEMMs generated in the 1980s and 1990s were knock-in and knock-out models of single oncogenes or tumor suppressors. The advances that made these models possible catalyzed both technological and conceptual shifts in the way cancer research was conducted. As a result, dozens of mouse models of cancer exist today, covering nearly every tissue type. The advantages inherent to GEMMs compared to

Keywords: CRISPR; Cre-loxP; RCAS-TVA; genetically engineered mouse models (GEMMs); radiation biology

Conflict of interest statement

Conflicts of Interest: DG Kirsch is a member of the scientific advisory board and owns stock in Lumicell Diagnostics, a company commercializing intraoperative imaging systems. DG Kirsch is a founder a

References

  1. Nat Genet. 2000 May;25(1):55-7 - PubMed
  2. Int J Cancer. 2001 Sep 1;93(5):693-8 - PubMed
  3. Nat Rev Cancer. 2003 Feb;3(2):117-29 - PubMed
  4. Nat Rev Cancer. 2003 Mar;3(3):155-68 - PubMed
  5. Int J Radiat Biol. 1992 Feb;61(2):149-60 - PubMed
  6. Acta Oncol. 2003;42(5-6):357-65 - PubMed
  7. Biochem Biophys Res Commun. 2005 Jun 10;331(3):726-36 - PubMed
  8. Nat Rev Genet. 2005 Jun;6(6):507-12 - PubMed
  9. Br J Cancer. 1991 May;63(5):723-6 - PubMed
  10. Cancer Res. 2006 Apr 1;66(7):3355-8, discussion 3358-9 - PubMed
  11. Nat Rev Drug Discov. 2006 Sep;5(9):741-54 - PubMed
  12. Nature. 2006 Sep 14;443(7108):214-7 - PubMed
  13. Clin Cancer Res. 2006 Sep 15;12(18):5312-28 - PubMed
  14. Nat Genet. 2007 Jul;39(7):914-21 - PubMed
  15. Genes Dev. 2008 Feb 15;22(4):436-48 - PubMed
  16. Lancet Oncol. 2009 Jul;10(7):718-26 - PubMed
  17. PLoS One. 2009 Aug 14;4(8):e6654 - PubMed
  18. Science. 2010 Jan 29;327(5965):593-6 - PubMed
  19. Int J Radiat Oncol Biol Phys. 2010 Mar 1;76(3):656-65 - PubMed
  20. Int J Radiat Oncol Biol Phys. 2010 Mar 15;76(4):973-7 - PubMed
  21. Cell Cycle. 2010 Apr 1;9(7):1434-43 - PubMed
  22. Cold Spring Harb Perspect Biol. 2010 Jul;2(7):a001180 - PubMed
  23. Cancer Cell. 2010 Dec 14;18(6):619-29 - PubMed
  24. Sci Signal. 2011 Jan 04;4(154):rs1 - PubMed
  25. Br J Radiol. 2011 Jun;84(1002):485-98 - PubMed
  26. Dis Model Mech. 2012 May;5(3):397-402 - PubMed
  27. Int J Cardiol. 2012 Apr 19;156(2):231-3 - PubMed
  28. Nat Cell Biol. 2012 Feb 19;14(3):318-28 - PubMed
  29. PLoS One. 2012;7(4):e35857 - PubMed
  30. Nat Protoc. 2012 May 24;7(6):1167-83 - PubMed
  31. Science. 2012 Aug 17;337(6096):816-21 - PubMed
  32. Sci Signal. 2012 Jul 24;5(234):ra52 - PubMed
  33. Blood. 2012 Dec 20;120(26):5118-27 - PubMed
  34. Science. 2013 Feb 15;339(6121):819-23 - PubMed
  35. Science. 2013 Feb 15;339(6121):823-6 - PubMed
  36. Front Oncol. 2013 Apr 02;3:72 - PubMed
  37. Trends Biotechnol. 2013 Jul;31(7):397-405 - PubMed
  38. Nature. 2013 Jun 13;498(7453):246-50 - PubMed
  39. Nat Rev Drug Discov. 2013 Jul;12(7):526-42 - PubMed
  40. Cell. 2013 Jul 18;154(2):442-51 - PubMed
  41. Nat Biotechnol. 2013 Sep;31(9):827-32 - PubMed
  42. PLoS One. 2013 Oct 02;8(10):e77639 - PubMed
  43. Nat Protoc. 2013 Nov;8(11):2281-2308 - PubMed
  44. Int J Radiat Oncol Biol Phys. 2014 Mar 1;88(3):686-93 - PubMed
  45. Nat Methods. 2014 Apr;11(4):399-402 - PubMed
  46. Nat Genet. 2014 May;46(5):444-450 - PubMed
  47. Proc Natl Acad Sci U S A. 2014 Apr 8;111(14):5248-53 - PubMed
  48. Nat Biotechnol. 2014 Jul;32(7):670-6 - PubMed
  49. Nat Biotechnol. 2014 Sep;32(9):941-6 - PubMed
  50. J Clin Invest. 2014 Aug;124(8):3325-38 - PubMed
  51. Nature. 2014 Oct 16;514(7522):380-4 - PubMed
  52. Cell. 2014 Oct 9;159(2):440-55 - PubMed
  53. Nature. 2014 Dec 18;516(7531):423-7 - PubMed
  54. Nature. 2014 Dec 18;516(7531):428-31 - PubMed
  55. Cell Rep. 2014 Nov 20;9(4):1219-27 - PubMed
  56. Nat Biotechnol. 2015 Feb;33(2):187-197 - PubMed
  57. Radiat Res. 2015 Jan;183(1):124-32 - PubMed
  58. Nat Methods. 2015 Mar;12(3):237-43, 1 p following 243 - PubMed
  59. Nat Methods. 2015 Apr;12(4):326-8 - PubMed
  60. Sci Transl Med. 2015 Mar 11;7(278):278ra34 - PubMed
  61. Nature. 2015 Apr 9;520(7546):186-91 - PubMed
  62. Nat Biotechnol. 2015 May;33(5):510-7 - PubMed
  63. Radiat Res. 2015 Jun;183(6):594-609 - PubMed
  64. Int J Radiat Oncol Biol Phys. 2015 Aug 1;92(5):1116-1122 - PubMed
  65. Nat Commun. 2015 Jun 11;6:7391 - PubMed
  66. Nature. 2015 Jul 23;523(7561):481-5 - PubMed
  67. Genes Dev. 2015 Jul 15;29(14):1576-85 - PubMed
  68. Nat Commun. 2015 Sep 24;6:8477 - PubMed
  69. Cell. 2015 Oct 22;163(3):759-71 - PubMed
  70. Nat Methods. 2015 Dec;12(12):1143-9 - PubMed
  71. Science. 2016 Jan 1;351(6268):84-8 - PubMed
  72. Nature. 2016 Jan 28;529(7587):490-5 - PubMed
  73. Nat Commun. 2016 Feb 26;7:10770 - PubMed
  74. Neoplasia. 2016 Feb;18(2):82-9 - PubMed
  75. Nature. 2016 Apr 20;533(7603):420-4 - PubMed
  76. Nat Methods. 2016 Jul;13(7):563-567 - PubMed
  77. Science. 2016 Aug 5;353(6299):aaf5573 - PubMed
  78. DNA Repair (Amst). 2016 Aug;44:6-16 - PubMed
  79. Genes Dev. 2016 Jun 15;30(12):1470-80 - PubMed
  80. Mol Cell. 2016 Aug 4;63(3):355-70 - PubMed
  81. Nature. 2016 Oct 13;538(7624):270-273 - PubMed
  82. J Virol. 1987 Oct;61(10):3004-12 - PubMed
  83. Oncogene. 1994 Dec;9(12):3731-6 - PubMed
  84. Nat Genet. 1994 Sep;8(1):66-9 - PubMed
  85. Proc Natl Acad Sci U S A. 1998 Feb 3;95(3):1218-23 - PubMed
  86. Genes Dev. 1998 Dec 1;12(23):3675-85 - PubMed

Publication Types

Grant support