Display options
Share it on

Phys Rev Lett. 2019 Jun 21;122(24):247202. doi: 10.1103/PhysRevLett.122.247202.

Spin Pinning and Spin-Wave Dispersion in Nanoscopic Ferromagnetic Waveguides.

Physical review letters

Q Wang, B Heinz, R Verba, M Kewenig, P Pirro, M Schneider, T Meyer, B Lägel, C Dubs, T Brächer, A V Chumak

Affiliations

  1. Fachbereich Physik and Landesforschungszentrum OPTIMAS, Technische Universität Kaiserslautern, D-67663 Kaiserslautern, Germany.
  2. Graduate School Materials Science in Mainz, Staudingerweg 9, 55128 Mainz, Germany.
  3. Institute of Magnetism, Kyiv 03680, Ukraine.
  4. THATec Innovation GmbH, Augustaanlage 23, 68165 Mannheim, Germany.
  5. Nano Structuring Center, Technische Universität Kaiserslautern, D-67663 Kaiserslautern, Germany.
  6. INNOVENT e.V., Technologieentwicklung, Prüssingstraße 27B, 07745 Jena, Germany.

PMID: 31322366 DOI: 10.1103/PhysRevLett.122.247202

Abstract

Spin waves are investigated in yttrium iron garnet waveguides with a thickness of 39 nm and widths ranging down to 50 nm, i.e., with an aspect ratio thickness over width approaching unity, using Brillouin light scattering spectroscopy. The experimental results are verified by a semianalytical theory and micromagnetic simulations. A critical width is found, below which the exchange interaction suppresses the dipolar pinning phenomenon. This changes the quantization criterion for the spin-wave eigenmodes and results in a pronounced modification of the spin-wave characteristics. The presented semianalytical theory allows for the calculation of spin-wave mode profiles and dispersion relations in nanostructures.

Publication Types