Display options
Share it on

Front Pharmacol. 2020 Jan 28;10:1580. doi: 10.3389/fphar.2019.01580. eCollection 2019.

Ultrastructural Changes Associated With the Enhanced Permeability of the Round Window Membrane Mediated by Ultrasound Microbubbles.

Frontiers in pharmacology

Yi-Chun Lin, Hsin-Chien Chen, Hang-Kang Chen, Yuan-Yung Lin, Chao-Yin Kuo, Hao Wang, Chia-Lien Hung, Cheng-Ping Shih, Chih-Hung Wang

Affiliations

  1. Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan.
  2. Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.
  3. Teaching and Research Section, Taichung Armed Forces General Hospital, Taichung, Taiwan.
  4. Taichung Armed Forces General Hospital, Taichung, Taiwan.

PMID: 32047431 PMCID: PMC6997169 DOI: 10.3389/fphar.2019.01580

Abstract

The round window membrane (RWM) is the most common entryway for local drug and gene delivery into the inner ear, but its permeability can change the treatment outcome. We previously demonstrated a feasible and highly efficient approach using ultrasound-aided microbubble (USMB) cavitation to enhance the permeability of the RWM. Here, we investigated the safety of USMB exposure and the association between temporal changes in RWM permeability and ultrastructure. Experimental guinea pigs were divided into two treatment groups: a control group receiving round window soaking (RWS) with MBs and treatment (USM) groups undergoing 3 (USM-3) or 5 (USM-5) consecutive USMB exposures (1 min/exposure) at an acoustic intensity of 3 W/cm

Copyright © 2020 Lin, Chen, Chen, Lin, Kuo, Wang, Hung, Shih and Wang.

Keywords: inner ear; microbubble; permeability; round window membrane (RWM); scanning electron microscope (SEM); transmission electron microscope (TEM); ultrasound; ultrastructure

References

  1. Hear Res. 2018 Oct;368:49-66 - PubMed
  2. Ultrasound Med Biol. 1989;15(8):707-22 - PubMed
  3. Ultrasound Med Biol. 2003 Feb;29(2):311-7 - PubMed
  4. Cancers (Basel). 2018 Sep 05;10(9): - PubMed
  5. Phys Biol. 2015 Nov 24;12(6):066007 - PubMed
  6. Tissue Eng. 2006 Mar;12(3):519-26 - PubMed
  7. Ultrasound Med Biol. 2016 Feb;42(2):345-57 - PubMed
  8. Ann Otol Rhinol Laryngol. 1983 Nov-Dec;92(6 Pt 1):629-34 - PubMed
  9. Drug Discov Today. 2005 Oct 1;10(19):1299-306 - PubMed
  10. Laryngoscope. 1988 Jun;98(6 Pt 2 Suppl 44):1-20 - PubMed
  11. J Control Release. 2012 Jan 10;157(1):103-11 - PubMed
  12. Eur J Pharm Sci. 2019 Jan 1;126:69-81 - PubMed
  13. Adv Otorhinolaryngol. 1984;33:1-162 - PubMed
  14. Gene Ther. 2012 Mar;19(3):255-63 - PubMed
  15. Ear Hear. 2010 Apr;31(2):156-65 - PubMed
  16. Int J Pharm. 2015 Oct 15;494(1):83-101 - PubMed
  17. Ther Deliv. 2014 Apr;5(4):467-86 - PubMed
  18. J Clin Invest. 2011 Apr;121(4):1519-23 - PubMed
  19. Neuroreport. 2003 Oct 27;14(15):1951-5 - PubMed
  20. Otolaryngol Clin North Am. 2002 Jun;35(3):639-53 - PubMed
  21. Expert Opin Drug Deliv. 2004 Nov;1(1):37-56 - PubMed
  22. J Control Release. 2013 Apr 28;167(2):167-74 - PubMed
  23. Laryngoscope. 2019 Aug;129(8):1907-1914 - PubMed
  24. Biophys J. 2009 Jun 17;96(12):4866-76 - PubMed
  25. Interface Focus. 2011 Aug 6;1(4):686-97 - PubMed
  26. Microsc Res Tech. 1997 Feb 1;36(3):201-11 - PubMed
  27. Curr Pharm Biotechnol. 2013;14(8):743-52 - PubMed
  28. Adv Drug Deliv Rev. 2008 Jun 30;60(10):1153-66 - PubMed
  29. Acta Otolaryngol. 2001 Jun;121(4):437-47 - PubMed
  30. Adv Drug Deliv Rev. 2017 Jan 1;108:2-12 - PubMed
  31. Front Cell Neurosci. 2019 Jun 03;13:238 - PubMed
  32. Pharm Res. 2002 Aug;19(8):1160-9 - PubMed
  33. Eur J Pharm Sci. 2019 Jan 1;126:82-92 - PubMed
  34. J Drug Target. 2013 Nov;21(9):846-54 - PubMed
  35. JAMA. 2011 May 25;305(20):2071-9 - PubMed
  36. Biomed Res Int. 2014;2014:840852 - PubMed
  37. J Control Release. 2018 Feb 28;272:169-181 - PubMed
  38. Curr Opin Otolaryngol Head Neck Surg. 2019 Oct;27(5):381-386 - PubMed
  39. J Control Release. 2005 May 5;104(1):213-22 - PubMed

Publication Types