Display options
Share it on

Freshw Biol. 2020 Nov;65(11):1973-1988. doi: 10.1111/fwb.13593. Epub 2020 Jul 13.

Effects of terrigenous organic substrates and additional phosphorus on bacterioplankton metabolism and exoenzyme stoichiometry.

Freshwater biology

Tz-Ching Yeh, Kathrin Krennmayr, Chien-Sen Liao, Elisabet Ejarque, Jasmin Schomakers, Jr-Chuan Huang, Franz Zehetner, Thomas Hein

Affiliations

  1. Institute of Hydrobiology and Aquatic Ecosystem Management University of Natural Resources and Life Sciences (BOKU) Vienna Austria.
  2. WasserCluster Lunz (WCL) Biological Station Lunz am See Austria.
  3. Department of Civil and Ecological Engineering I-Shou University Kaohsiung Taiwan.
  4. Institute of Soil Research University of Natural Resources and Life Sciences (BOKU) Vienna Austria.
  5. Department of Geography National Taiwan University (NTU) Taipei Taiwan.

PMID: 33288968 PMCID: PMC7689783 DOI: 10.1111/fwb.13593

Abstract

Bamboo, as a pioneer vegetation, often forms forests on bare lands after catastrophic landslides. Compared to evergreen forest soil, bamboo forest soil is much more labile, with a higher percentage of microbially derived organic carbon (OC), lower molecular weight, and lower humic acid content. We hypothesised that different terrigenous organic matter (tOM) sources with varying lability and phosphorus (P) availability select for bacterioplankton with distinct metabolic pathways.We incubated natural bacterioplankton assemblages with tOM leached from bamboo forest soil (BOM) and evergreen forest soil (EOM) and compared these to a lake water control. To test if microbial metabolism would be limited by OC or P availability of each tOM treatment, we used acetate as an extra labile OC source and phosphate as an inorganic P source. Bacterial metabolism was measured by analysing respiration via O

© 2020 The Authors. Freshwater Biology published by John Wiley & Sons Ltd.

Keywords: aquatic metabolism; bamboo forest soil; evergreen forest soil; laboratory experiment; terrigenous organic matter

Conflict of interest statement

The authors declare no conflict of interest.

References

  1. J Mol Microbiol Biotechnol. 2007;13(1-3):1-11 - PubMed
  2. Appl Spectrosc. 2009 Aug;63(8):936-40 - PubMed
  3. ISME J. 2010 Mar;4(3):408-16 - PubMed
  4. PLoS One. 2014 Apr 14;9(4):e94819 - PubMed
  5. Appl Environ Microbiol. 1996 Jun;62(6):1991-7 - PubMed
  6. Arch Microbiol. 1991;155(6):559-65 - PubMed
  7. Environ Microbiol. 2016 Feb;18(2):656-67 - PubMed
  8. Appl Environ Microbiol. 1984 Dec;48(6):1076-83 - PubMed
  9. Appl Environ Microbiol. 2007 Nov;73(21):6722-9 - PubMed
  10. Environ Sci Technol. 2006 Apr 1;40(7):2357-62 - PubMed
  11. Front Microbiol. 2013 Jun 14;4:149 - PubMed
  12. Front Microbiol. 2012 Sep 26;3:348 - PubMed
  13. Sci Rep. 2016 Aug 25;6:32211 - PubMed
  14. ISME J. 2016 Jun;10(6):1373-82 - PubMed
  15. Aquat Sci. 2014;76:115-129 - PubMed
  16. Environ Microbiol. 2012 Jun;14(6):1432-43 - PubMed
  17. Appl Environ Microbiol. 2013 Dec;79(23):7130-41 - PubMed
  18. Appl Environ Microbiol. 1993 Nov;59(11):3916-21 - PubMed
  19. Microb Ecol. 2010 Nov;60(4):885-93 - PubMed
  20. Microb Ecol. 2018 Jul;76(1):144-155 - PubMed
  21. Appl Environ Microbiol. 2003 Jul;69(7):3701-9 - PubMed
  22. Microb Ecol. 1988 Nov;16(3):311-22 - PubMed
  23. Appl Environ Microbiol. 1995 Oct;61(10):3667-75 - PubMed
  24. Ecol Lett. 2013 Jul;16(7):930-9 - PubMed
  25. Appl Environ Microbiol. 2003 Apr;69(4):2253-68 - PubMed
  26. ISME J. 2009 Sep;3(9):1064-9 - PubMed
  27. Environ Microbiol. 2019 Feb;21(2):557-571 - PubMed
  28. Sci Total Environ. 2018 Aug 15;633:81-92 - PubMed
  29. Ecol Lett. 2010 Jul;13(7):870-80 - PubMed
  30. FEMS Microbiol Rev. 1990 Mar;6(1):1-18 - PubMed
  31. Geomorphology (Amst). 2019 Jul 2;288:164-174 - PubMed

Publication Types