Display options
Share it on

Transgenic Res. 2021 Apr;30(2):129-141. doi: 10.1007/s11248-020-00232-9. Epub 2021 Feb 20.

Mini review: genome and transcriptome editing using CRISPR-cas systems for haematological malignancy gene therapy.

Transgenic research

Esther K Elliott, Larisa M Haupt, Lyn R Griffiths

Affiliations

  1. Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), 60 Musk Ave, Kelvin Grove, QLD, 4059, Australia.
  2. Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), 60 Musk Ave, Kelvin Grove, QLD, 4059, Australia. [email protected].

PMID: 33609253 DOI: 10.1007/s11248-020-00232-9

Abstract

The recent introduction of clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR associated protein (Cas) systems, offer an array of genome and transcriptome editing tools for clinical repair strategies. These include Cas9, Cas12a, dCas9 and more recently Cas13 effectors. RNA targeting CRISPR-Cas13 complexes show unique characteristics with the capability to engineer transcriptomes and modify gene expression, providing a potential clinical cancer therapy tool across various tissue types. Cas13 effectors such as RNA base editing for A to I replacement allows for precise transcript modification. Further applications of Cas13a highlights its capability of producing rapid diagnostic results in a mobile platform. This review will focus on the adaptions of existing CRISPR-Cas systems, along with new Cas effectors for transcriptome or RNA modifications used in disease modelling and gene therapy for haematological malignancy. We also address the current diagnostic and therapeutic potential of CRISPR-Cas systems for personalised haematological malignancy.

Keywords: CRISPR1; Cas4; Gene-therapy3; Genome-editing2; Malignancy6; Transcriptome5

References

  1. Abudayyeh, O. O., Gootenberg, J. S., Konermann, S., Joung, J., Slaymaker, I. M., Cox, D. B., Zhang, F. (2016). C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science, 353(6299), aaf5573. doi: https://doi.org/10.1126/science.aaf5573 - PubMed
  2. Abudayyeh OO, Gootenberg JS, Essletzbichler P, Han S, Joung J, Belanto JJ, Zhang F (2017) RNA targeting with CRISPR-Cas13. Nature 550(7675):280–284. https://doi.org/10.1038/nature24049 - PubMed
  3. Anzalone AV, Randolph PB, Davis JR, Sousa AA, Koblan LW, Levy JM, Liu DR (2019) Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576(7785):149–157. https://doi.org/10.1038/s41586-019-1711-4 - PubMed
  4. Bhaya D, Davison M, Barrangou R (2011) CRISPR-Cas systems in bacteria and archaea: versatile small RNAs for adaptive defense and regulation. Annu Rev Genet 45:273–297. https://doi.org/10.1146/annurev-genet-110410-132430 - PubMed
  5. Bradshaw G, Lualhati RR, Albury CL, Maksemous N, Roos-Araujo D, Smith RA, Griffiths LR (2018) Exome sequencing diagnoses X-linked Moesin-associated immunodeficiency in a primary immunodeficiency case. Front Immunol 9:420. https://doi.org/10.3389/fimmu.2018.00420 - PubMed
  6. Charlesworth CT, Camarena J, Cromer MK, Vaidyanathan S, Bak RO, Carte JM, Porteus MH (2018) Priming human repopulating hematopoietic stem and progenitor cells for Cas9/sgRNA gene targeting. Mol Ther Nucleic Acids 12:89–104. https://doi.org/10.1016/j.omtn.2018.04.017 - PubMed
  7. Charlesworth CT, Deshpande PS, Dever DP, Camarena J, Lemgart VT, Cromer MK, Porteus MH (2019) Identification of preexisting adaptive immunity to Cas9 proteins in humans. Nat Med 25(2):249–254. https://doi.org/10.1038/s41591-018-0326-x - PubMed
  8. Chen YH, Xu LP, Chen H, Liu DH, Zhang XH, Han W, Huang XJ (2011) The efficacy and safety of second allogeneic hematopoietic stem cell transplantation for post-transplant hematologic malignancies relapse. Zhonghua Nei Ke Za Zhi 50(6):489–491. https://doi.org/10.3760/cma.j.issn.0578-1426.2011.06.011 - PubMed
  9. Cheng AW, Wang H, Yang H, Shi L, Katz Y, Theunissen TW, Jaenisch R (2013) Multiplexed activation of endogenous genes by CRISPR-on, an RNA-guided transcriptional activator system. Cell Res 23(10):1163–1171. https://doi.org/10.1038/cr.2013.122 - PubMed
  10. Chew, W. L. (2018). Immunity to CRISPR Cas9 and Cas12a therapeutics. Wiley Interdiscip Rev Syst Biol Med, 10(1). doi: https://doi.org/10.1002/wsbm.1408 - PubMed
  11. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339(6121):819–823. https://doi.org/10.1126/science.1231143 - PubMed
  12. Cooper ML, Choi J, Staser K, Ritchey JK, Devenport JM, Eckardt K, DiPersio JF (2018) An “off-the-shelf” fratricide-resistant CAR-T for the treatment of T cell hematologic malignancies. Leukemia 32(9):1970–1983. https://doi.org/10.1038/s41375-018-0065-5 - PubMed
  13. Cox DBT, Gootenberg JS, Abudayyeh OO, Franklin B, Kellner MJ, Joung J, Zhang F (2017) RNA editing with CRISPR-Cas13. Science 358(6366):1019–1027. https://doi.org/10.1126/science.aaq0180 - PubMed
  14. Doudna, J. A., and Charpentier, E. (2014). Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science, 346(6213), 1258096. doi: https://doi.org/10.1126/science.1258096 - PubMed
  15. Doudna JA, Gersbach CA (2015) Genome editing: the end of the beginning. Genome Biol 16:292. https://doi.org/10.1186/s13059-015-0860-5 - PubMed
  16. East-Seletsky A, O'Connell MR, Burstein D, Knott GJ, Doudna JA (2017) RNA targeting by functionally orthogonal type VI-A CRISPR-Cas enzymes. Mol Cell 66(3):373–383 e373. https://doi.org/10.1016/j.molcel.2017.04.008 - PubMed
  17. Eid A, Alshareef S, Mahfouz MM (2018) CRISPR base editors: genome editing without double-stranded breaks. Biochem J 475(11):1955–1964. https://doi.org/10.1042/BCJ20170793 - PubMed
  18. Elbashir SM, Lendeckel W, Tuschl T (2001) RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev 15(2):188–200. https://doi.org/10.1101/gad.862301 - PubMed
  19. Fire AZ (2007) Gene silencing by double-stranded RNA. Cell Death Differ 14(12):1998–2012. https://doi.org/10.1038/sj.cdd.4402253 - PubMed
  20. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391(6669):806–811. https://doi.org/10.1038/35888 - PubMed
  21. Gasiunas G, Siksnys V (2013) RNA-dependent DNA endonuclease Cas9 of the CRISPR system: holy grail of genome editing? Trends Microbiol 21(11):562–567. https://doi.org/10.1016/j.tim.2013.09.001 - PubMed
  22. Gasiunas G, Barrangou R, Horvath P, Siksnys V (2012) Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci U S A 109(39):E2579-2586. https://doi.org/10.1073/pnas.1208507109 - PubMed
  23. Gonzalez-Romero E, Martinez-Valiente C, Garcia-Ruiz C, Vazquez-Manrique RP, Cervera J, Sanjuan-Pla A (2019) CRISPR to fix bad blood: a new tool in basic and clinical hematology. Haematologica 104(5):881–893. https://doi.org/10.3324/haematol.2018.211359 - PubMed
  24. Gootenberg JS, Abudayyeh OO, Kellner MJ, Joung J, Collins JJ, Zhang F (2018) Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6. Science 360(6387):439–444. https://doi.org/10.1126/science.aaq0179 - PubMed
  25. Henrickson, S. E., Andre-Schmutz, I., Lagresle-Peyrou, C., Deardorff, M. A., Jyonouchi, H., Neven, B., Heimall, J. R. (2019). Hematopoietic Stem Cell Transplant for the Treatment of X-MAID. Frontiers in Pediatrics, 7(170). doi: https://doi.org/10.3389/fped.2019.00170 - PubMed
  26. Howlader N, Mariotto AB, Besson C, Suneja G, Robien K, Younes N, Engels EA (2017) Cancer-specific mortality, cure fraction, and noncancer causes of death among diffuse large B-cell lymphoma patients in the immunochemotherapy era. Cancer 123(17):3326–3334. https://doi.org/10.1002/cncr.30739 - PubMed
  27. Hussaini MO, Mirza AS, Komrokji R, Lancet J, Padron E, Song J (2018) Genetic landscape of acute myeloid leukemia interrogated by next-generation sequencing: a large cancer center experience. Cancer Genomics Proteomics 15(2):121–126. https://doi.org/10.21873/cgp.20070 - PubMed
  28. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816–821. https://doi.org/10.1126/science.1225829 - PubMed
  29. Kaczmarek JC, Kowalski PS, Anderson DG (2017) Advances in the delivery of RNA therapeutics: from concept to clinical reality. Genome Med 9(1):60. https://doi.org/10.1186/s13073-017-0450-0 - PubMed
  30. Kohn DB, Porteus MH, Scharenberg AM (2016) Ethical and regulatory aspects of genome editing. Blood 127(21):2553–2560. https://doi.org/10.1182/blood-2016-01-678136 - PubMed
  31. Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR (2016) Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533(7603):420–424. https://doi.org/10.1038/nature17946 - PubMed
  32. Konermann, S., Lotfy, P., Brideau, N. J., Oki, J., Shokhirev, M. N., and Hsu, P. D. (2018). Transcriptome Engineering with RNA-Targeting Type VI-D CRISPR Effectors. Cell, 173(3), 665–676 e614. doi: https://doi.org/10.1016/j.cell.2018.02.033 - PubMed
  33. Lagresle-Peyrou, C., Luce, S., Ouchani, F., Soheili, T. S., Sadek, H., Chouteau, M., Andre-Schmutz, I. (2016). X-linked primary immunodeficiency associated with hemizygous mutations in the moesin (MSN) gene. J Allergy Clin Immunol, 138(6), 1681–1689 e1688. doi: https://doi.org/10.1016/j.jaci.2016.04.032 - PubMed
  34. Legut M, Dolton G, Mian AA, Ottmann OG, Sewell AK (2018) CRISPR-mediated TCR replacement generates superior anticancer transgenic T cells. Blood 131(3):311–322. https://doi.org/10.1182/blood-2017-05-787598 - PubMed
  35. Lin S, Staahl BT, Alla RK, Doudna JA (2014) Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery. Elife 3:e04766. https://doi.org/10.7554/eLife.04766 - PubMed
  36. Liu X, Zhao Y (2018) CRISPR/Cas9 genome editing: fueling the revolution in cancer immunotherapy. Curr Res Transl Med 66(2):39–42. https://doi.org/10.1016/j.retram.2018.04.003 - PubMed
  37. Liu, L., Li, X., Ma, J., Li, Z., You, L., Wang, J., Wang, Y. (2017). The Molecular Architecture for RNA-Guided RNA Cleavage by Cas13a. Cell, 170(4), 714–726 e710. doi: https://doi.org/10.1016/j.cell.2017.06.050 - PubMed
  38. Montiel-Gonzalez MF, Vallecillo-Viejo IC, Rosenthal JJ (2016) An efficient system for selectively altering genetic information within mRNAs. Nucleic Acids Res 44(21):e157. https://doi.org/10.1093/nar/gkw738 - PubMed
  39. Moses C, Nugent F, Waryah CB, Garcia-Bloj B, Harvey AR, Blancafort P (2019) Activating PTEN tumor suppressor expression with the CRISPR/dCas9 system. Mol Ther Nucleic Acids 14:287–300. https://doi.org/10.1016/j.omtn.2018.12.003 - PubMed
  40. Myhrvold C, Freije CA, Gootenberg JS, Abudayyeh OO, Metsky HC, Durbin AF, Sabeti PC (2018) Field-deployable viral diagnostics using CRISPR-Cas13. Science 360(6387):444–448. https://doi.org/10.1126/science.aas8836 - PubMed
  41. National Institute of Health U.S National Library of Medicine (2020) Clinical Trials. Retrieved from https://clinicaltrials.gov/ct2 - PubMed
  42. Nelles DA, Fang MY, Aigner S, Yeo GW (2015) Applications of Cas9 as an RNA-programmed RNA-binding protein. BioEssays 37(7):732–739. https://doi.org/10.1002/bies.201500001 - PubMed
  43. Nelles DA, Fang MY, O’Connell MR, Xu JL, Markmiller SJ, Doudna JA, Yeo GW (2016) Programmable RNA tracking in live cells with CRISPR/Cas9. Cell 165(2):488–496. https://doi.org/10.1016/j.cell.2016.02.054 - PubMed
  44. O’Connell MR, Oakes BL, Sternberg SH, East-Seletsky A, Kaplan M, Doudna JA (2014) Programmable RNA recognition and cleavage by CRISPR/Cas9. Nature 516(7530):263–266. https://doi.org/10.1038/nature13769 - PubMed
  45. Papaemmanuil E, Gerstung M, Bullinger L, Gaidzik VI, Paschka P, Roberts ND, Campbell PJ (2016) Genomic classification and prognosis in acute myeloid leukemia. N Engl J Med 374(23):2209–2221. https://doi.org/10.1056/NEJMoa1516192 - PubMed
  46. Pasqualucci L, Dalla-Favera R (2018) Genetics of diffuse large B-cell lymphoma. Blood 131(21):2307–2319. https://doi.org/10.1182/blood-2017-11-764332 - PubMed
  47. Peng R, Lin G, Li J (2016) Potential pitfalls of CRISPR/Cas9-mediated genome editing. FEBS J 283(7):1218–1231. https://doi.org/10.1111/febs.13586 - PubMed
  48. Pubmed, N. C. B. I. (2013). CRISPR Cas9 Genome Editing 2013. Retrieved from https://pubmed.ncbi.nlm.nih.gov/?term=crispr+cas9+genome+editingandfilter=years.2013-2013andtimeline=expanded - PubMed
  49. Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F (2013) Genome engineering using the CRISPR-Cas9 system. Nat Protoc 8(11):2281–2308. https://doi.org/10.1038/nprot.2013.143 - PubMed
  50. Ren J, Liu X, Fang C, Jiang S, June CH, Zhao Y (2017) Multiplex genome editing to generate universal CAR T cells resistant to PD1 inhibition. Clin Cancer Res 23(9):2255–2266. https://doi.org/10.1158/1078-0432.CCR-16-1300 - PubMed
  51. Shen B, Zhang W, Zhang J, Zhou J, Wang J, Chen L, Skarnes WC (2014) Efficient genome modification by CRISPR-Cas9 nickase with minimal off-target effects. Nat Methods 11(4):399–402. https://doi.org/10.1038/nmeth.2857 - PubMed
  52. Skarnes WC, Pellegrino E, McDonough JA (2019) Improving homology-directed repair efficiency in human stem cells. Methods 164–165:18–28. https://doi.org/10.1016/j.ymeth.2019.06.016 - PubMed
  53. Stadtmauer, E. A., Fraietta, J. A., Davis, M. M., Cohen, A. D., Weber, K. L., Lancaster, E., June, C. H. (2020). CRISPR-engineered T cells in patients with refractory cancer. Science, 367(6481). doi: https://doi.org/10.1126/science.aba7365 - PubMed
  54. Su S, Zou Z, Chen F, Ding N, Du J, Shao J, Liu B (2017) CRISPR-Cas9-mediated disruption of PD-1 on human T cells for adoptive cellular therapies of EBV positive gastric cancer. Oncoimmunology 6(1):e1249558. https://doi.org/10.1080/2162402X.2016.1249558 - PubMed
  55. Xia AL, He QF, Wang JC, Zhu J, Sha YQ, Sun B, Lu XJ (2019) Applications and advances of CRISPR-Cas9 in cancer immunotherapy. J Med Genet 56(1):4–9. https://doi.org/10.1136/jmedgenet-2018-105422 - PubMed
  56. Yoshida M, Yokota E, Sakuma T, Yamatsuji T, Takigawa N, Ushijima T, Naomoto Y (2018) Development of an integrated CRISPRi targeting DeltaNp63 for treatment of squamous cell carcinoma. Oncotarget 9(49):29220–29232. https://doi.org/10.18632/oncotarget.25678 - PubMed
  57. Zalatan JG, Lee ME, Almeida R, Gilbert LA, Whitehead EH, La Russa M, Lim WA (2015) Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds. Cell 160(1–2):339–350. https://doi.org/10.1016/j.cell.2014.11.052 - PubMed
  58. Zhang Q, Rho M, Tang H, Doak TG, Ye Y (2013) CRISPR-Cas systems target a diverse collection of invasive mobile genetic elements in human microbiomes. Genome Biol 14(4):R40. https://doi.org/10.1186/gb-2013-14-4-r40 - PubMed
  59. Zhang F, Wen Y, Guo X (2014) CRISPR/Cas9 for genome editing: progress, implications and challenges. Hum Mol Genet 23(R1):R40-46. https://doi.org/10.1093/hmg/ddu125 - PubMed
  60. Zhang Y, Rajan R, Seifert HS, Mondragon A, Sontheimer EJ (2015) DNase H Activity of Neisseria meningitidis Cas9. Mol Cell 60(2):242–255. https://doi.org/10.1016/j.molcel.2015.09.020 - PubMed
  61. Zimmerly S, Guo H, Eskes R, Yang J, Perlman PS, Lambowitz AM (1995) A group II intron RNA is a catalytic component of a DNA endonuclease involved in intron mobility. Cell 83(4):529–538. https://doi.org/10.1016/0092-8674(95)90092-6 - PubMed

Publication Types