Display options
Share it on

J Immunother Cancer. 2021 Mar;9(3). doi: 10.1136/jitc-2020-002009.

Circulating cytokines associated with clinical response to systemic therapy in metastatic renal cell carcinoma.

Journal for immunotherapy of cancer

Alexander Chehrazi-Raffle, Luis Meza, Marice Alcantara, Nazli Dizman, Paulo Bergerot, Nicholas Salgia, JoAnn Hsu, Nora Ruel, Sabrina Salgia, Jasnoor Malhotra, Ewa Karczewska, Marcin Kortylewski, Sumanta Pal

Affiliations

  1. Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, California, USA.
  2. Department of Immuno-Oncology, City of Hope Comprehensive Cancer Center, Duarte, California, USA.
  3. Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA.
  4. Department of Medical Oncology, Cettro Cancer Center, Brasilia, Brazil.
  5. Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York, Brazil.
  6. Department of Computational and Quantitative Medicine, City of Hope Comprehensive Cancer Center, Duarte, California, USA.
  7. Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, California, USA [email protected].

PMID: 33688021 PMCID: PMC7944971 DOI: 10.1136/jitc-2020-002009

Abstract

BACKGROUND: Circulating cytokines and angiogenic factors have been associated with clinical outcomes in patients with metastatic renal cell carcinoma (RCC) receiving systemic therapy. However, none have yet examined cytokine concentrations in parallel cohorts receiving either immunotherapy or targeted therapy.

METHODS: In this prospective correlative study, we enrolled 56 patients who were planned for treatment with either a vascular endothelial growth factor-tyrosine kinase inhibitor (VEGF-TKI) or immune checkpoint inhibitor (ICI). Eligibility requirements permitted any RCC histologic subtype, International Metastatic Renal Cell Carcinoma risk classification, and line of therapy. Immunologic profile was assessed at baseline and after 1 month on treatment using a Human Cytokine 30-plex protein assay (Invitrogen). Clinical benefit was defined as complete response, partial response, or stable disease ≥6 months per RECIST (Response Evaluation Criteria in Solid Tumors) V.1.1 criteria.

RESULTS: Clinical benefit was similar between VEGF-TKI and ICI arms (65% vs 54%). Patients with clinical benefit from VEGF-TKIs had lower pretreatment levels of interleukin-6 (IL-6) (p=0.02), IL-1RA (p=0.03), and granulocyte colony-stimulating factor (CSF) (p=0.02). At 1 month, patients with clinical benefit from ICIs had higher levels of interferon-γ (IFN-γ) (p=0.04) and IL-12 (p=0.03). Among patients on VEGF-TKIs, those with clinical benefit had lower 1 month IL-13 (p=0.02) and granulocyte macrophage CSF (p=0.01) as well as higher 1 month VEGF (p=0.04) compared with patients with no clinical benefit.

CONCLUSION: For patients receiving VEGF-TKI or ICI therapy, distinct plasma cytokines were associated with clinical benefit. Our findings support additional investigation into plasma cytokines as biomarkers in metastatic RCC.

© Author(s) (or their employer(s)) 2021. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.

Keywords: biomarkers; cytokines; immunotherapy; tumor

Conflict of interest statement

Competing interests: SP reports consulting roles in Genentech, Aveo, Eisai, Roche, Pfizer, Novartis, Exelixis, Ipsen, BMS, and Astellas. ACR, LM, MA, ND, PB, NS, JH, NR, EK, and MK declare no conflict

References

  1. Blood. 2005 Dec 1;106(12):3846-53 - PubMed
  2. Mol Cancer Ther. 2011 Jul;10(7):1149-60 - PubMed
  3. Cell Death Differ. 2015 Feb;22(2):237-46 - PubMed
  4. Oncotarget. 2016 Apr 26;7(17):24527-36 - PubMed
  5. Cancers (Basel). 2020 Sep 14;12(9): - PubMed
  6. DNA Cell Biol. 2009 Jul;28(7):335-41 - PubMed
  7. Urology. 2001 Nov;58(5):821-7 - PubMed
  8. Nat Med. 2020 May;26(5):688-692 - PubMed
  9. Clin Cancer Res. 2018 Nov 15;24(22):5534-5542 - PubMed
  10. Br J Cancer. 2015 Feb 17;112(4):745-54 - PubMed
  11. Cancer Res. 2006 Jan 15;66(2):1123-31 - PubMed
  12. Cancer Res. 2016 Nov 1;76(21):6266-6277 - PubMed
  13. Cell. 2015 Jan 15;160(1-2):37-47 - PubMed
  14. Tumour Biol. 2009;30(4):185-99 - PubMed
  15. Anticancer Res. 1996 Jan-Feb;16(1):437-41 - PubMed
  16. Invasion Metastasis. 1993;13(4):169-77 - PubMed
  17. Cancer Res. 2013 Jul 1;73(13):3927-37 - PubMed
  18. J Clin Oncol. 2004 Jun 15;22(12):2371-8 - PubMed
  19. PLoS One. 2013;8(1):e53265 - PubMed
  20. J Hematol Oncol. 2014 Feb 06;7:14 - PubMed
  21. J Urol. 2015 Apr;193(4):1114-21 - PubMed
  22. Mol Clin Oncol. 2019 Mar;10(3):401-414 - PubMed
  23. Ann Oncol. 2012 Jan;23(1):46-52 - PubMed
  24. Cancer Res. 2014 Mar 1;74(5):1576-87 - PubMed
  25. Clin Cancer Res. 2010 Oct 1;16(19):4853-63 - PubMed
  26. Nat Rev Cancer. 2009 Nov;9(11):798-809 - PubMed
  27. J Immunother Cancer. 2019 Dec 11;7(1):348 - PubMed
  28. Clin Cancer Res. 2016 Nov 15;22(22):5461-5471 - PubMed
  29. Nat Med. 2020 May;26(5):650-651 - PubMed
  30. Nat Rev Immunol. 2007 Jan;7(1):41-51 - PubMed
  31. Oncotarget. 2016 Sep 20;7(38):61183-61198 - PubMed
  32. Am J Transl Res. 2016 Feb 15;8(2):1064-72 - PubMed
  33. Genes Immun. 2005 Mar;6(2):167-70 - PubMed
  34. Nat Commun. 2016 Jun 30;7:12080 - PubMed
  35. Cancer Res. 2012 Dec 15;72(24):6338-43 - PubMed
  36. Lancet Oncol. 2012 Aug;13(8):827-37 - PubMed
  37. Clin Cancer Res. 2011 Oct 1;17(19):6118-24 - PubMed
  38. Mol Cancer Ther. 2005 Nov;4(11):1740-6 - PubMed
  39. Cytokine. 2015 Sep;75(1):79-88 - PubMed
  40. Mol Cell. 2010 Oct 22;40(2):294-309 - PubMed
  41. Cancer Res. 2012 Jun 1;72(11):2780-90 - PubMed
  42. Cancer Res. 1993 Oct 15;53(20):5051-4 - PubMed
  43. Cancer Res. 2014 Aug 15;74(16):4329-40 - PubMed
  44. Cancer Res. 2004 Dec 1;64(23):8778-81 - PubMed
  45. ESMO Open. 2017 Jul 3;2(2):e000213 - PubMed
  46. J Chem Inf Model. 2019 Jan 28;59(1):351-359 - PubMed
  47. Int J Clin Exp Pathol. 2015 Feb 01;8(2):1594-603 - PubMed
  48. Annu Rev Pathol. 2007;2:145-73 - PubMed
  49. Int J Cancer. 2011 Jun 15;128(12):2803-14 - PubMed
  50. Br J Cancer. 2017 Aug 8;117(4):478-484 - PubMed
  51. Immunol Rev. 2018 Jan;281(1):57-61 - PubMed
  52. Anticancer Res. 1987 Jul-Aug;7(4B):695-700 - PubMed
  53. Cold Spring Harb Perspect Biol. 2018 Jul 2;10(7): - PubMed
  54. Nat Immunol. 2018 Feb;19(2):108-119 - PubMed
  55. J Clin Invest. 2008 Oct;118(10):3367-77 - PubMed
  56. Neoplasia. 2013 Jul;15(7):848-62 - PubMed
  57. Oncologist. 2015 Oct;20(10):1140-8 - PubMed
  58. Fukushima J Med Sci. 2018 Dec 8;64(3):103-110 - PubMed
  59. Clin Cancer Res. 2019 Oct 15;25(20):6098-6106 - PubMed
  60. Immunity. 2018 Dec 18;49(6):1148-1161.e7 - PubMed

Publication Types