Display options
Share it on

Br J Pharmacol. 2021 Dec;178(23):4626-4645. doi: 10.1111/bph.15641. Epub 2021 Sep 26.

Involvement of P2Y.

British journal of pharmacology

Flóra Gölöncsér, Mária Baranyi, András Iring, László Hricisák, Lilla Otrokocsi, Zoltán Benyó, Beáta Sperlágh

Affiliations

  1. Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Budapest, Hungary.
  2. Institute of Translational Medicine, Semmelweis University, Budapest, Hungary.
  3. János Szentágothai Doctoral School, Semmelweis University, Budapest, Hungary.

PMID: 34363208 DOI: 10.1111/bph.15641

Abstract

BACKGROUND AND PURPOSE: P2Y

EXPERIMENTAL APPROACH: We tested the effect of the centrally administered selective P2Y

KEY RESULTS: Nitroglycerin induced sensory hypersensitivity of C57BL/6 wild-type (P2ry12

CONCLUSION AND IMPLICATIONS: Our findings show that acute inhibition of P2Y

© 2021 The Authors. British Journal of Pharmacology published by John Wiley & Sons Ltd on behalf of British Pharmacological Society.

Keywords: P2Y12 receptor; PSB-0739; clopidogrel; migraine; mouse model; nitroglycerin

References

  1. Abbracchio, M. P., Burnstock, G., Boeynaems, J. M., Barnard, E. A., Boyer, J. L., Kennedy, C., Knight, G. E., Fumagalli, M., Gachet, C., Jacobson, K. A., & Weisman, G. A. (2006). International Union of Pharmacology LVIII: Update on the P2Y G protein-coupled nucleotide receptors: From molecular mechanisms and pathophysiology to therapy. Pharmacological Reviews, 58(3), 281-341. https://doi.org/10.1124/pr.58.3.3 - PubMed
  2. Agster, K. L., Mejias-Aponte, C. A., Clark, B. D., & Waterhouse, B. D. (2013). Evidence for a regional specificity in the density and distribution of noradrenergic varicosities in rat cortex. The Journal of Comparative Neurology, 521(10), 2195-2207. https://doi.org/10.1002/cne.23270 - PubMed
  3. Alexander, S. P. H., Christopoulos, A., Davenport, A. P., Kelly, E., Mathie, A., Peters, J. A., Veale, E. L., Armstrong, J. F., Faccenda, E., Harding, S. D., Pawson, A. J., Sharman, J. L., Southan, C., Davies, J. A., & Collaborators, C. (2019). The Concise Guide to PHARMACOLOGY 2019/20: G protein-coupled receptors. British Journal of Pharmacology, 176, S21-S141. https://doi.org/10.1111/bph.14748 - PubMed
  4. Alexander, S. P. H., Roberts, R. E., Broughton, B. R. S., Sobey, C. G., George, C. H., Stanford, S. C., Cirino, G., Docherty, J. R., Giembycz, M. A., Hoyer, D., Insel, P. A., Izzo, A. A., Ji, Y., MacEwan, D. J., Mangum, J., Wonnacott, S., & Ahluwalia, A. (2018). Goals and practicalities of immunoblotting and immunohistochemistry: A guide for submission to the British Journal of Pharmacology. British Journal of Pharmacology, 175(3), 407-411. https://doi.org/10.1111/bph.14112 - PubMed
  5. Andreou, A. P., & Edvinsson, L. (2019). Mechanisms of migraine as a chronic evolutive condition. Journal of Headache and Pain, 20(1), 117. https://doi.org/10.1186/s10194-019-1066-0 - PubMed
  6. Aoki, H., Inoue, M., Mizobe, T., Harada, M., Imai, H., & Kobayashi, A. (1997). Platelet function is inhibited by nitric oxide liberation during nitroglycerin-induced hypotension anaesthesia. British Journal of Anaesthesia, 79(4), 476-481. https://doi.org/10.1093/bja/79.4.476 - PubMed
  7. Arribas-Blazquez, M., Olivos-Ore, L. A., Barahona, M. V., Sanchez de la Muela, M., Solar, V., Jimenez, E., Gualix, J., McIntosh, J. M., Ferrer-Montiel, A., Miras-Portugal, M. T., & Artalejo, A. R. (2019). Overexpression of P2X3 and P2X7 receptors and TRPV1 channels in adrenomedullary chromaffin cells in a rat model of neuropathic pain. International Journal of Molecular Sciences, 20(1), 155. https://doi.org/10.3390/ijms20010155 - PubMed
  8. Bannister, K., & Dickenson, A. H. (2016). What do monoamines do in pain modulation? Current Opinion in Supportive and Palliative Care, 10(2), 143-148. https://doi.org/10.1097/SPC.0000000000000207 - PubMed
  9. Baranyi, M., Milusheva, E., Vizi, E. S., & Sperlagh, B. (2006). Chromatographic analysis of dopamine metabolism in a Parkinsonian model. Journal of Chromatography. A, 1120(1-2), 13-20. https://doi.org/10.1016/j.chroma.2006.03.018 - PubMed
  10. Beko, K., Kovanyi, B., Goloncser, F., Horvath, G., Denes, A., Kornyei, Z., Botz, B., Helyes, Z., Müller, C. E., & Sperlagh, B. (2017). Contribution of platelet P2Y12 receptors to chronic Complete Freund's adjuvant-induced inflammatory pain. Journal of Thrombosis and Haemostasis, 15(6), 1223-1235. https://doi.org/10.1111/jth.13684 - PubMed
  11. Ben Addi, A., Cammarata, D., Conley, P. B., Boeynaems, J. M., & Robaye, B. (2010). Role of the P2Y12 receptor in the modulation of murine dendritic cell function by ADP. Journal of Immunology, 185(10), 5900-5906. https://doi.org/10.4049/jimmunol.0901799 - PubMed
  12. Benarroch, E. E. (2018). Locus coeruleus. Cell and Tissue Research, 373(1), 221-232. https://doi.org/10.1007/s00441-017-2649-1 - PubMed
  13. Bolay, H., Berman, N. E., & Akcali, D. (2011). Sex-related differences in animal models of migraine headache. Headache, 51(6), 891-904. https://doi.org/10.1111/j.1526-4610.2011.01903.x - PubMed
  14. Borgdorff, P., & Tangelder, G. J. (2012). Migraine: Possible role of shear-induced platelet aggregation with serotonin release. Headache, 52(8), 1298-1318. https://doi.org/10.1111/j.1526-4610.2012.02162.x - PubMed
  15. Burnstock, G. (2013). Purinergic mechanisms and pain-An update. European Journal of Pharmacology, 716(1-3), 24-40. https://doi.org/10.1016/j.ejphar.2013.01.078 - PubMed
  16. Burnstock, G., & Ralevic, V. (2014). Purinergic signaling and blood vessels in health and disease. Pharmacological Reviews, 66(1), 102-192. https://doi.org/10.1124/pr.113.008029 - PubMed
  17. Burstein, R., Jakubowski, M., & Rauch, S. D. (2011). The science of migraine. Journal of Vestibular Research, 21(6), 305-314. https://doi.org/10.3233/VES-2012-0433 - PubMed
  18. Bussone, G. (2008). Cluster headache: From treatment to pathophysiology. Neurological Sciences, 29(Suppl 1), S1-S6. https://doi.org/10.1007/s10072-008-0875-8 - PubMed
  19. Butovsky, O., Jedrychowski, M. P., Moore, C. S., Cialic, R., Lanser, A. J., Gabriely, G., Koeglsperger, T., Dake, B., Wu, P. M., Doykan, C. E., Fanek, Z., Liu, L. P., Chen, Z., Rothstein, J. D., Ransohoff, R. M., Gygi, S. P., Antel, J. P., & Weiner, H. L. (2014). Identification of a unique TGF-β-dependent molecular and functional signature in microglia. Nature Neuroscience, 17(1), 131-143. https://doi.org/10.1038/nn.3599 - PubMed
  20. Calovi, S., Mut-Arbona, P., & Sperlagh, B. (2019). Microglia and the purinergic signaling system. Neuroscience, 405, 137-147. https://doi.org/10.1016/j.neuroscience.2018.12.021 - PubMed
  21. Cattaneo, M. (2019). The platelet P2 receptors. In A. Michelson, M. Cattaneo, A. Frelinger, & P. Newman (Eds.), Platelets (pp. 259-277). Academic Press. - PubMed
  22. Ceruti, S., Villa, G., Fumagalli, M., Colombo, L., Magni, G., Zanardelli, M., Fabbretti, E., Verderio, C., van den Maagdenberg, A. M. J. M., Nistri, A., & Abbracchio, M. P. (2011). Calcitonin gene-related peptide-mediated enhancement of purinergic neuron/glia communication by the algogenic factor bradykinin in mouse trigeminal ganglia from wild-type and R192Q Cav2.1 knock-in mice: Implications for basic mechanisms of migraine pain. The Journal of Neuroscience, 31(10), 3638-3649. https://doi.org/10.1523/JNEUROSCI.6440-10.2011 - PubMed
  23. Chambers, J. B., Seed, P. T., & Ridsdale, L. (2014). Clopidogrel as prophylactic treatment for migraine: A pilot randomised, controlled study. Cephalalgia, 34(14), 1163-1168. https://doi.org/10.1177/0333102414531156 - PubMed
  24. Chanda, M. L., Tuttle, A. H., Baran, I., Atlin, C., Guindi, D., Hathaway, G., Israelian, N., Levenstadt, J., Low, D., Macrae, L., O'Shea, L., Silver, A., Zendegui, E., Lenselink, M. A., Spijker, S., Ferrari, M. D., van den Maagdenberg, A. M. J. M., & Mogil, J. S. (2013). Behavioral evidence for photophobia and stress-related ipsilateral head pain in transgenic Cacna1a mutant mice. Pain, 154(8), 1254-1262. https://doi.org/10.1016/j.pain.2013.03.038 - PubMed
  25. Charan, J., & Biswas, T. (2013). How to calculate sample size for different study designs in medical research? Indian Journal of Psychological Medicine, 35(2), 121-126. https://doi.org/10.4103/0253-7176.116232 - PubMed
  26. Charles, A. (2017). Migraine. The New England Journal of Medicine, 377(17), 1698-1699. https://doi.org/10.1056/NEJMc1711803 - PubMed
  27. Cieslak, M., Czarnecka, J., Roszek, K., & Komoszynski, M. (2015). The role of purinergic signaling in the etiology of migraine and novel antimigraine treatment. Purinergic Signal, 11(3), 307-316. https://doi.org/10.1007/s11302-015-9453-8 - PubMed
  28. Cottrell, G. S. (2019). CGRP receptor signalling pathways. Handbook of experimental pharmacology, 255, 37-64. https://doi.org/10.1007/164_2018_130 - PubMed
  29. Cseh, E. K., Veres, G., Kortesi, T., Polyak, H., Nanasi, N., Tajti, J., Párdutz, Á., Klivényi, P., Vécsei, L., & Zadori, D. (2020). Neurotransmitter and tryptophan metabolite concentration changes in the complete Freund's adjuvant model of orofacial pain. The Journal of Headache and Pain, 21(1), 35-47. https://doi.org/10.1186/s10194-020-01105-6 - PubMed
  30. Cserep, C., Posfai, B., Lenart, N., Fekete, R., Laszlo, Z. I., Lele, Z., Schwarcz, A. D., Ujvári, K., Csiba, L., Hortobágyi, T., Maglóczky, Z., Martinecz, B., Szabó, G., Erdélyi, F., Szipőcs, R., Gesierich, B., Duering, M., Katona, I., Liesz, A., … Denes, A. (2020). Microglia monitor and protect neuronal function through specialized somatic purinergic junctions. Science, 367(6477), 528-537. https://doi.org/10.1126/science.aax6752 - PubMed
  31. Curtis, M. J., Alexander, S., Cirino, G., Docherty, J. R., George, C. H., Giembycz, M. A., Hoyer, D., Insel, P. A., Izzo, A. A., Ji, Y., MacEwan, D. J., Sobey, C. G., Stanford, S. C., Teixeira, M. M., Wonnacott, S., & Ahluwalia, A. (2018). Experimental design and analysis and their reporting II: Updated and simplified guidance for authors and peer reviewers. British Journal of Pharmacology, 175(7), 987-993. https://doi.org/10.1111/bph.14153 - PubMed
  32. Danese, E., Montagnana, M., & Lippi, G. (2014). Platelets and migraine. Thrombosis Research, 134(1), 17-22. https://doi.org/10.1016/j.thromres.2014.03.055 - PubMed
  33. Demartini, C., Greco, R., Zanaboni, A. M., Sances, G., De Icco, R., Borsook, D., & Tassorelli, C. (2019). Nitroglycerin as a comparative experimental model of migraine pain: From animal to human and back. Progress in Neurobiology, 177, 15-32. https://doi.org/10.1016/j.pneurobio.2019.02.002 - PubMed
  34. Dias, E. V., Sartori, C. R., Mariao, P. R., Vieira, A. S., Camargo, L. C., Athie, M. C., Pagliusi, M. O., Tambeli, C. H., & Parada, C. A. (2015). Nucleus accumbens dopaminergic neurotransmission switches its modulatory action in chronification of inflammatory hyperalgesia. The European Journal of Neuroscience, 42(7), 2380-2389. https://doi.org/10.1111/ejn.13015 - PubMed
  35. Dieb, W., Ouachikh, O., Durif, F., & Hafidi, A. (2016). Nigrostriatal dopaminergic depletion produces orofacial static mechanical allodynia. European Journal of Pain, 20(2), 196-205. https://doi.org/10.1002/ejp.707 - PubMed
  36. Dodick, D. W. (2018). Migraine. Lancet, 391(10127), 1315-1330. https://doi.org/10.1016/S0140-6736(18)30478-1 - PubMed
  37. Dukhinova, M., Kuznetsova, I., Kopeikina, E., Veniaminova, E., Yung, A. W. Y., Veremeyko, T., Levchuk, K., Barteneva, N. S., Wing-Ho, K. K., Yung, W. H., Liu, J. Y. H., Rudd, J., Yau, S. S. Y., Anthony, D. C., Strekalova, T., & Ponomarev, E. D. (2018). Platelets mediate protective neuroinflammation and promote neuronal plasticity at the site of neuronal injury. Brain, Behavior, and Immunity, 74, 7-27. https://doi.org/10.1016/j.bbi.2018.09.009 - PubMed
  38. Durham, P. L. (2006). Calcitonin gene-related peptide (CGRP) and migraine. Headache, 46(Suppl 1), S3-S8. https://doi.org/10.1111/j.1526-4610.2006.00483.x - PubMed
  39. Ebine, T., Toriumi, H., Shimizu, T., Unekawa, M., Takizawa, T., Kayama, Y., Shibata, M., & Suzuki, N. (2016). Alterations in the threshold of the potassium concentration to evoke cortical spreading depression during the natural estrous cycle in mice. Neuroscience Research, 112, 57-62. https://doi.org/10.1016/j.neures.2016.06.001 - PubMed
  40. Fekete, R., Cserep, C., Lenart, N., Toth, K., Orsolits, B., Martinecz, B., Méhes, E., Szabó, B., Németh, V., Gönci, B., Sperlágh, B., Boldogkői, Z., Kittel, Á., Baranyi, M., Ferenczi, S., Kovács, K., Szalay, G., Rózsa, B., Webb, C., … Denes, A. (2018). Microglia control the spread of neurotropic virus infection via P2Y12 signalling and recruit monocytes through P2Y12-independent mechanisms. Acta Neuropathologica, 136(3), 461-482. https://doi.org/10.1007/s00401-018-1885-0 - PubMed
  41. Goloncser, F., & Sperlagh, B. (2014). Effect of genetic deletion and pharmacological antagonism of P2X7 receptors in a mouse animal model of migraine. The Journal of Headache and Pain, 15, 24. https://doi.org/10.1186/1129-2377-15-24 - PubMed
  42. Gu, N., Eyo, U. B., Murugan, M., Peng, J., Matta, S., Dong, H., & Wu, L. J. (2016). Microglial P2Y12 receptors regulate microglial activation and surveillance during neuropathic pain. Brain, Behavior, and Immunity, 55, 82-92. https://doi.org/10.1016/j.bbi.2015.11.007 - PubMed
  43. Haanes, K. A., Labastida-Ramirez, A., Blixt, F. W., Rubio-Beltran, E., Dirven, C. M., Danser, A. H., Edvinsson, L., & MaassenVanDenBrink, A. (2019). Exploration of purinergic receptors as potential anti-migraine targets using established pre-clinical migraine models. Cephalalgia, 39(11), 1421-1434. https://doi.org/10.1177/0333102419851810 - PubMed
  44. Hechler, B., & Gachet, C. (2017). The P2 receptors. In Platelets in thrombotic and non-thrombotic disorders: Pathophysiology, pharmacology and therapeutics: An update (pp. 187-202). Springer, Cham. - PubMed
  45. Horvath, G., Goloncser, F., Csolle, C., Kiraly, K., Ando, R. D., Baranyi, M., Koványi, B., Máté, Z., Hoffmann, K., Algaier, I., Baqi, Y., Müller, C. E., von Kügelgen, I., & Sperlagh, B. (2014). Central P2Y12 receptor blockade alleviates inflammatory and neuropathic pain and cytokine production in rodents. Neurobiology of Disease, 70, 162-178. https://doi.org/10.1016/j.nbd.2014.06.011 - PubMed
  46. Iring, A., Hricisak, L., & Benyo, Z. (2017). CB1 receptor-mediated respiratory depression by endocannabinoids. Respiratory Physiology & Neurobiology, 240, 48-52. https://doi.org/10.1016/j.resp.2017.02.011 - PubMed
  47. Iyengar, S., Ossipov, M. H., & Johnson, K. W. (2017). The role of calcitonin gene-related peptide in peripheral and central pain mechanisms including migraine. Pain, 158(4), 543-559. https://doi.org/10.1097/j.pain.0000000000000831 - PubMed
  48. Jing, F., Zhang, Y., Long, T., He, W., Qin, G., Zhang, D., Chen, L., & Zhou, J. (2019). P2Y12 receptor mediates microglial activation via RhoA/ROCK pathway in the trigeminal nucleus caudalis in a mouse model of chronic migraine. Journal of Neuroinflammation, 16(1), 217-237. https://doi.org/10.1186/s12974-019-1603-4 - PubMed
  49. Kim, J. Y. V., Tillu, D. V., Quinn, T. L., Mejia, G. L., Shy, A., Asiedu, M. N. K., Murad, E., Schumann, A. P., Totsch, S. K., Sorge, R. E., Mantyh, P. W., Dussor, G., & Price, T. J. (2015). Spinal dopaminergic projections control the transition to pathological pain plasticity via a D1/D5-mediated mechanism. Journal of Neuroscience, 35(16), 6307-6317. https://doi.org/10.1523/Jneurosci.3481-14.2015 - PubMed
  50. Kobayashi, K., Yamanaka, H., Fukuoka, T., Dai, Y., Obata, K., & Noguchi, K. (2008). P2Y12 receptor upregulation in activated microglia is a gateway of p38 signaling and neuropathic pain. The Journal of Neuroscience, 28(11), 2892-2902. https://doi.org/10.1523/JNEUROSCI.5589-07.2008 - PubMed
  51. Kovacs, K. J. (2008). Measurement of immediate-early gene activation- c-fos and beyond. Journal of Neuroendocrinology, 20(6), 665-672. https://doi.org/10.1111/j.1365-2826.2008.01734.x - PubMed
  52. Lilley, E., Stanford, S. C., Kendall, D. E., Alexander, S. P., Cirino, G., Docherty, J. R., George, C. H., Insel, P. A., Izzo, A. A., Ji, Y., Panettieri, R. A., Sobey, C. G., Stefanska, B., Stephens, G., Teixeira, M., & Ahluwalia, A. (2020). ARRIVE 2.0 and the British Journal of Pharmacology: Updated guidance for 2020. British Journal of Pharmacology, 177(16), 3611-3616. https://doi.org/10.1111/bph.15178 - PubMed
  53. Liu, S., Tang, Y., Shu, H., Tatum, D., Bai, Q., Crawford, J., Xing, Y., Lobo, M. K., Bellinger, L., Kramer, P., & Tao, F. (2019). Dopamine receptor D2, but not D1, mediates descending dopaminergic pathway-produced analgesic effect in a trigeminal neuropathic pain mouse model. Pain, 160(2), 334-344. https://doi.org/10.1097/j.pain.0000000000001414 - PubMed
  54. Liverani, E., Rico, M. C., Yaratha, L., Tsygankov, A. Y., Kilpatrick, L. E., & Kunapuli, S. P. (2014). LPS-induced systemic inflammation is more severe in P2Y12 null mice. Journal of Leukocyte Biology, 95(2), 313-323. https://doi.org/10.1189/jlb.1012518 - PubMed
  55. Long, T., He, W., Pan, Q., Zhang, S., Zhang, D., Qin, G., Chen, L., & Zhou, J. (2020). Microglia P2X4R-BDNF signalling contributes to central sensitization in a recurrent nitroglycerin-induced chronic migraine model. The Journal of Headache and Pain, 21(1), 4. https://doi.org/10.1186/s10194-019-1070-4 - PubMed
  56. Long, T., He, W., Pan, Q., Zhang, S., Zhang, Y., Liu, C., Liu, Q., Qin, G., Chen, L., & Zhou, J. (2018). Microglia P2X4 receptor contributes to central sensitization following recurrent nitroglycerin stimulation. Journal of Neuroinflammation, 15(1), 245-256. https://doi.org/10.1186/s12974-018-1285-3 - PubMed
  57. Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193(1), 265-275. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/14907713 - PubMed
  58. Magni, G., & Ceruti, S. (2013). P2Y purinergic receptors: New targets for analgesic and antimigraine drugs. Biochemical Pharmacology, 85(4), 466-477. https://doi.org/10.1016/j.bcp.2012.10.027 - PubMed
  59. Markovics, A., Kormos, V., Gaszner, B., Lashgarara, A., Szoke, E., Sandor, K., Szabadfi, K., Tuka, B., Tajti, J., Szolcsanyi, J., Pinter, E., Hashimoto, H., Kun, J., Reglodi, D., & Helyes, Z. (2012). Pituitary adenylate cyclase-activating polypeptide plays a key role in nitroglycerol-induced trigeminovascular activation in mice. Neurobiology of Disease, 45(1), 633-644. https://doi.org/10.1016/j.nbd.2011.10.010 - PubMed
  60. Mestre, C., Pelissier, T., Fialip, J., Wilcox, G., & Eschalier, A. (1994). A method to perform direct transcutaneous intrathecal injection in rats. Journal of Pharmacological and Toxicological Methods, 32(4), 197-200. https://doi.org/10.1016/1056-8719(94)90087-6 - PubMed
  61. Millan, M. J. (2002). Descending control of pain. Progress in Neurobiology, 66(6), 355-474. https://doi.org/10.1016/s0301-0082(02)00009-6 - PubMed
  62. Nylander, S., & Schulz, R. (2016). Effects of P2Y12 receptor antagonists beyond platelet inhibition-Comparison of ticagrelor with thienopyridines. British Journal of Pharmacology, 173(7), 1163-1178. https://doi.org/10.1111/bph.13429 - PubMed
  63. Offermanns, S. (2006). Activation of platelet function through G protein-coupled receptors. Circulation Research, 99(12), 1293-1304. https://doi.org/10.1161/01.RES.0000251742.71301.16 - PubMed
  64. Panneton, W. M., Gan, Q., & Livergood, R. S. (2011). A trigeminoreticular pathway: Implications in pain. PLoS ONE, 6(9), e24499. https://doi.org/10.1371/journal.pone.0024499 - PubMed
  65. Percie du Sert, N., Hurst, V., Ahluwalia, A., Alam, S., Avey, M. T., Baker, M., Browne, W. J., Clark, A., Cuthill, I. C., Dirnagl, U., Emerson, M., Garner, P., Holgate, S. T., Howells, D. W., Karp, N. A., Lazic, S. E., Lidster, K., MacCallum, C. J., Macleod, M., … Würbel, H. (2020). The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. PLoS Biology, 18(7), e3000410. https://doi.org/10.1371/journal.pbio.3000410 - PubMed
  66. Peroutka, S. J. (2004). Migraine: A chronic sympathetic nervous system disorder. Headache, 44(1), 53-64. https://doi.org/10.1111/j.1526-4610.2004.04011.x - PubMed
  67. Polycarpou, A., Hricisak, L., Iring, A., Safar, D., Ruisanchez, E., Horvath, B., Sándor, P., & Benyo, Z. (2016). Adaptation of the cerebrocortical circulation to carotid artery occlusion involves blood flow redistribution between cortical regions and is independent of eNOS. American Journal of Physiology. Heart and Circulatory Physiology, 311(4), H972-H980. https://doi.org/10.1152/ajpheart.00197.2016 - PubMed
  68. Reisman, A. M., Robbins, B. T., Chou, D. E., Yugrakh, M. S., Gross, G. J., Privitera, L., Nazif, T., & Sommer, R. J. (2018). Ticagrelor for Refractory Migraine/Patent Foramen Ovale (TRACTOR): An open-label pilot study. Neurology, 91(22), 1010-1017. https://doi.org/10.1212/WNL.0000000000006573 - PubMed
  69. Reuter, U., Bolay, H., Jansen-Olesen, I., Chiarugi, A., Sanchez del Rio, M., Letourneau, R., Theoharides, T. C., Waeber, C., Moskowitz, M. A., & Moskowitz, M. A. (2001). Delayed inflammation in rat meninges: Implications for migraine pathophysiology. Brain, 124(Pt 12), 2490-2502. https://doi.org/10.1093/brain/124.12.2490 - PubMed
  70. Salio, C., Averill, S., Priestley, J. V., & Merighi, A. (2007). Costorage of BDNF and neuropeptides within individual dense-core vesicles in central and peripheral neurons. Developmental Neurobiology, 67(3), 326-338. https://doi.org/10.1002/dneu.20358 - PubMed
  71. Slaba, I., & Kubes, P. (2017). Platelets and immunity. In P. Gresele, N. S. Kleiman, J. A. Lopez, & C. P. Page (Eds.), Platelets in thrombotic and non-thrombotic disorders (pp. 489-512). Springer, Cham. - PubMed
  72. Sugawara, S., Okada, S., Katagiri, A., Saito, H., Suzuki, T., Komiya, H., Kanno, K., Ohara, K., Iinuma, T., Toyofuku, A., & Iwata, K. (2017). Interaction between calcitonin gene-related peptide-immunoreactive neurons and satellite cells via P2Y12R in the trigeminal ganglion is involved in neuropathic tongue pain in rats. European Journal of Oral Sciences, 125(6), 444-452. https://doi.org/10.1111/eos.12382 - PubMed
  73. Suleimanova, A., Talanov, M., Gafurov, O., Gafarov, F., Koroleva, K., Virenque, A., Noe, F. M., Mikhailov, N., Nistri, A., & Giniatullin, R. (2020). Modeling a nociceptive neuro-immune synapse activated by ATP and 5-HT in meninges: Novel clues on transduction of chemical signals into persistent or rhythmic neuronal firing. Frontiers in Cellular Neuroscience, 14, 135. https://doi.org/10.3389/fncel.2020.00135 - PubMed
  74. Supowit, S. C., Zhao, H., & DiPette, D. J. (2001). Nerve growth factor enhances calcitonin gene-related peptide expression in the spontaneously hypertensive rat. Hypertension, 37(2 Pt 2), 728-732. https://doi.org/10.1161/01.hyp.37.2.728 - PubMed
  75. Suzuki, R., Rygh, L. J., & Dickenson, A. H. (2004). Bad news from the brain: Descending 5-HT pathways that control spinal pain processing. Trends in Pharmacological Sciences, 25(12), 613-617. https://doi.org/10.1016/j.tips.2004.10.002 - PubMed
  76. Tassorelli, C., Blandini, F., Costa, A., Preza, E., & Nappi, G. (2002). Nitroglycerin-induced activation of monoaminergic transmission in the rat. Cephalalgia, 22(3), 226-232. https://doi.org/10.1046/j.1468-2982.2002.00355.x - PubMed
  77. Tatsumi, E., Yamanaka, H., Kobayashi, K., Yagi, H., Sakagami, M., & Noguchi, K. (2015). RhoA/ROCK pathway mediates p38 MAPK activation and morphological changes downstream of P2Y12/13 receptors in spinal microglia in neuropathic pain. Glia, 63(2), 216-228. https://doi.org/10.1002/glia.22745 - PubMed
  78. Tozaki-Saitoh, H., Tsuda, M., Miyata, H., Ueda, K., Kohsaka, S., & Inoue, K. (2008). P2Y12 receptors in spinal microglia are required for neuropathic pain after peripheral nerve injury. The Journal of Neuroscience, 28(19), 4949-4956. https://doi.org/10.1523/JNEUROSCI.0323-08.2008 - PubMed
  79. Turner, M. D., Nedjai, B., Hurst, T., & Pennington, D. J. (2014). Cytokines and chemokines: At the crossroads of cell signalling and inflammatory disease. Biochimica et Biophysica Acta, 1843(11), 2563-2582. https://doi.org/10.1016/j.bbamcr.2014.05.014 - PubMed
  80. Villa, G., Ceruti, S., Zanardelli, M., Magni, G., Jasmin, L., Ohara, P. T., & Abbracchio, M. P. (2010). Temporomandibular joint inflammation activates glial and immune cells in both the trigeminal ganglia and in the spinal trigeminal nucleus. Molecular Pain, 6, 89. https://doi.org/10.1186/1744-8069-6-89 - PubMed
  81. Vuralli, D., Wattiez, A. S., Russo, A. F., & Bolay, H. (2019). Behavioral and cognitive animal models in headache research. Journal of Headache and Pain, 20(1), 11-26. https://doi.org/10.1186/s10194-019-0963-6 - PubMed
  82. Wang, Q., Shen, L., Ma, S. Y., Chen, M. W., Lin, X., Hong, Y. L., & Feng, Y. (2016). Determination of the levels of two types of neurotransmitter and the anti-migraine effects of different dose-ratios of Ligusticum chuanxiong and Gastrodia elata. Journal of Food and Drug Analysis, 24(1), 189-198. https://doi.org/10.1016/j.jfda.2015.08.005 - PubMed
  83. Wang, S., Wang, Z., Li, L., Zou, L., Gong, Y., Jia, T., Zhao, S., Yuan, H., Shi, L., Liu, S., Wu, B., Yi, Z., Liu, H., Gao, Y., Li, G., Deussing, J. M., Li, M., Zhang, C., & Liang, S. (2018). P2Y12 shRNA treatment decreases SGC activation to relieve diabetic neuropathic pain in type 2 diabetes mellitus rats. Journal of Cellular Physiology, 233(12), 9620-9628. https://doi.org/10.1002/jcp.26867 - PubMed
  84. Yan, J., Melemedjian, O. K., Price, T. J., & Dussor, G. (2012). Sensitization of dural afferents underlies migraine-related behavior following meningeal application of interleukin-6 (IL-6). Molecular Pain, 8, 6. https://doi.org/10.1186/1744-8069-8-6 - PubMed
  85. Yi, L., Wu, Q., Chen, N., Song, G., Wang, C., Zou, Q., & Zhang, Z. (2018). Valproate plays a protective role against migraine by inhibiting protein kinase C signalling in nitroglycerin-treated mice. Basic & Clinical Pharmacology & Toxicology, 122(3), 310-316. https://doi.org/10.1111/bcpt.12915 - PubMed
  86. Yu, T., Zhang, X., Shi, H., Tian, J., Sun, L., Hu, X., Cui, W., & Du, D. (2019). P2Y12 regulates microglia activation and excitatory synaptic transmission in spinal lamina II neurons during neuropathic pain in rodents. Cell Death & Disease, 10(3), 1-16. https://doi.org/10.1038/s41419-019-1425-4 - PubMed

Publication Types

Grant support