Display options
Share it on

J Mol Med (Berl). 2021 Nov 19; doi: 10.1007/s00109-021-02158-z. Epub 2021 Nov 19.

Discriminating head trauma outcomes using machine learning and genomics.

Journal of molecular medicine (Berlin, Germany)

Omar Ibrahim, Heidi G Sutherland, Rodney A Lea, Fatima Nasrallah, Neven Maksemous, Robert A Smith, Larisa M Haupt, Lyn R Griffiths

Affiliations

  1. Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, 60 Musk Ave, Kelvin Grove, QLD, 4059, Australia.
  2. The Queensland Brain Institute, The University of Queensland, Brisbane, Australia.
  3. Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, 60 Musk Ave, Kelvin Grove, QLD, 4059, Australia. [email protected].

PMID: 34797388 DOI: 10.1007/s00109-021-02158-z

Abstract

A percentage of the population suffers prolonged and persistent post-concussion symptoms (PCS) following average head injuries or develops severe neurological dysfunction following minor head trauma. Genetic variants that may contribute to individual response to head trauma have been investigated in some studies, but to date none have explored the use of machine learning (ML) methods with genomic data to specifically explore outcomes of head trauma. Whole exome sequencing (WES) was completed for three groups of individuals (N = 60): (a) 16 individuals with severe neurological responses to minor head trauma, (b) 26 individuals with persistent PCS and (c) 18 individuals with normal recovery from concussion or mTBI. Gradient boosted tree algorithms were applied to the data using XGBoost. By using variants with CADD scores above 15 in the training set (randomly sampled 70%), we identified signatures that accurately distinguish to accurately distinguish the test groups with an average area under the curve (AUC) of 0.8 (SE = 0.019). Metrics including positive and negative prediction values, as well as kappa were all within acceptable range to support the prediction accuracy. This study illustrates how ML methods in combination with WES data have the potential to predict severe or prolonged responses to head trauma from healthy recovery. KEY MESSAGES: Linear association analysis has been inconclusive in concussion genetics. Non-linear methods as boosted trees can offer better insights in small samples. Strong discrimination trends can be achieved from exome data of cases and controls.

© 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

Keywords: Concussion; Genomics; Head trauma; Machine learning; Neurotrauma

References

  1. Messina R, Filippi M, Goadsby PJ (2018) Recent advances in headache neuroimaging. Curr Opin Neurol 31(4):379–385. https://doi.org/10.1097/wco.0000000000000573 - PubMed
  2. Rocca MA, Ceccarelli A, Falini A, Colombo B, Tortorella P, Bernasconi L, Comi G, Scotti G, Filippi M (2006) Brain gray matter changes in migraine patients with T2-visible lesions: a 3-T MRI study. Stroke 37(7):1765–1770. https://doi.org/10.1161/01.STR.0000226589.00599.4d - PubMed
  3. Iverson GL, Gardner AJ, Terry DP, Ponsford JL, Sills AK, Broshek DK, Solomon GS (2017) Predictors of clinical recovery from concussion: a systematic review. Br J Sports Med 51(12):941–948. https://doi.org/10.1136/bjsports-2017-097729 - PubMed
  4. McDevitt J, Krynetskiy E (2017) Genetic findings in sport-related concussions: potential for individualized medicine? Concussion (London, England) 2(1):CNC26–CNC26. https://doi.org/10.2217/cnc-2016-0020 - PubMed
  5. Coyle HL, Ponsford J, Hoy KE (2018) Understanding individual variability in symptoms and recovery following mTBI: a role for TMS-EEG? Neurosci Biobehav Rev 92:140–149. https://doi.org/10.1016/j.neubiorev.2018.05.027 - PubMed
  6. Johnson B, Zhang K, Gay M, Horovitz S, Hallett M, Sebastianelli W, Slobounov S (2012) Alteration of brain default network in subacute phase of injury in concussed individuals: resting-state fMRI study. Neuroimage 59(1):511–518. https://doi.org/10.1016/j.neuroimage.2011.07.081 . Epub 2011 Aug 7. PMID: 21846504; PMCID: PMC3196274 - PubMed
  7. Yang J et al (2010) Common SNPs explain a large proportion of the heritability for human height. Nat Genet 42(7):565 - PubMed
  8. Romagnoni A, Jégou S, Van Steen K, Wainrib G, Hugot J-P (2019) Comparative performances of machine learning methods for classifying Crohn disease patients using genome-wide genotyping data. Sci Rep 9(1):1–18 - PubMed
  9. González-Recio O, Jiménez-Montero J, Alenda R (2013) The gradient boosting algorithm and random boosting for genome-assisted evaluation in large data sets. J Dairy Sci 96(1):614–624 - PubMed
  10. Auffray C, Griffin JL, Khoury MJ, Lupski JR, Schwab M (2019) Ten years of Genome Medicine. Genome Med 11(1):7. https://doi.org/10.1186/s13073-019-0618-x - PubMed
  11. Ashley EA (2015) The precision medicine initiative: a new national effort. JAMA 313(21):2119–2120. https://doi.org/10.1001/jama.2015.3595 - PubMed
  12. Trakadis YJ, Sardaar S, Chen A, Fulginiti V, Krishnan A (2019) Machine learning in schizophrenia genomics, a case-control study using 5,090 exomes. Am J Med Genet B Neuropsychiatr Genet 180(2):103–112. https://doi.org/10.1002/ajmg.b.32638 - PubMed
  13. Er F, Iscen P, Sahin S, Çinar N, Karsidag S, Goularas D (2017) Distinguishing age-related cognitive decline from dementias: a study based on machine learning algorithms. J Clin Neurosci 42:186–192. https://doi.org/10.1016/j.jocn.2017.03.021 - PubMed
  14. Kassahun Y, Perrone R, De Momi E, Berghöfer E, Tassi L, Canevini MP, Spreafico R, Ferrigno G, Kirchner F (2014) Automatic classification of epilepsy types using ontology-based and genetics-based machine learning. Artif Intell Med 61(2):79–88. https://doi.org/10.1016/j.artmed.2014.03.001 - PubMed
  15. Pare G, Mao S, Deng WQ (2017) A machine-learning heuristic to improve gene score prediction of polygenic traits. Sci Rep 7(1):1–11 - PubMed
  16. Ibrahim O, Sutherland HG, Maksemous N, Smith R, Haupt LM, Griffiths LR (2020) Exploring neuronal vulnerability to head trauma using a whole exome approach. J Neurotrauma 37(17):1870–1879. https://doi.org/10.1089/neu.2019.6962 - PubMed
  17. Li H (2011) A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics (Oxford, England) 27(21):2987–2993. https://doi.org/10.1093/bioinformatics/btr509 - PubMed
  18. Danecek P et al (2011) The variant call format and VCFtools. Bioinformatics 27(15):2156–2158. https://doi.org/10.1093/bioinformatics/btr330 - PubMed
  19. Chen T, Guestrin C (2016) Xgboost: a scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining 785–794.  https://doi.org/10.1145/2939672.2939785 . PMID: 30767786; PMCID: PMC6376775.KDD - PubMed
  20. Wray NR, Yang J, Goddard ME, Visscher PM (2010) The genetic interpretation of area under the ROC curve in genomic profiling. PLoS Genet 6(2):e1000864. https://doi.org/10.1371/journal.pgen.1000864 - PubMed
  21. Park JH, Shin SD, Song KJ, Hong KJ, Ro YS, Choi JW, Choi SW (2019) Prediction of good neurological recovery after out-of-hospital cardiac arrest: a machine learning analysis. Resuscitation 142:127–135. https://doi.org/10.1016/j.resuscitation.2019.07.020 - PubMed
  22. Giza CC et al (2013) Summary of evidence-based guideline update: evaluation and management of concussion in sports: report of the Guideline Development Subcommittee of the American Academy of Neurology. Neurology 80(24):2250–2257. https://doi.org/10.1212/WNL.0b013e31828d57dd - PubMed
  23. Maksemous N et al (2019) Targeted next generation sequencing identifies a genetic spectrum of DNA variants in patients with hemiplegic migraine. Cephalalgia Rep 2:2515816319881630 - PubMed
  24. Sweadner KJ, Toro C, Whitlow CT, Snively BM, Cook JF, Ozelius LJ, Markello TC, Brashear A (2016) ATP1A3 mutation in adult rapid-onset ataxia. PLoS ONE 11(3):e0151429–e0151429. https://doi.org/10.1371/journal.pone.0151429 - PubMed
  25. Fadó R, Rodríguez-Rodríguez R, Casals N (2021) The return of malonyl-CoA to the brain: cognition and other stories. Prog Lipid Res 81:101071. https://doi.org/10.1016/j.plipres.2020.101071 - PubMed
  26. Zhang L et al (2015) Mitochondria-focused gene expression profile reveals common pathways and CPT1B dysregulation in both rodent stress model and human subjects with PTSD. Transl Psychiatry 5(6):e580–e580 - PubMed
  27. Chung RS, Leung YK, Butler CW, Chen Y, Eaton ED, Pankhurst MW, West AK, Guillemin GJ (2009) Metallothionein treatment attenuates microglial activation and expression of neurotoxic quinolinic acid following traumatic brain injury. Neurotox Res 15(4):381–389. https://doi.org/10.1007/s12640-009-9044-y - PubMed
  28. Zaręba N, Kepinska M (2020) The function of transthyretin complexes with metallothionein in Alzheimer’s disease. Int J Mol Sci 21(23):9003. https://doi.org/10.3390/ijms21239003 - PubMed
  29. Daneshjou R et al (2017) Working toward precision medicine: predicting phenotypes from exomes in the critical assessment of genome interpretation (CAGI) challenges. Hum Mutat 38(9):1182–1192. https://doi.org/10.1002/humu.23280 - PubMed
  30. Ben-David A (2008) Comparison of classification accuracy using Cohen’s weighted kappa. Expert Syst Appl 34(2):825–832 - PubMed
  31. Seigel DG, Podgo MJ, Remaley NA (1992) Acceptable values of kappa for comparison of two groups. Am J Epidemiol 135(5):571–578 - PubMed
  32. Rasmussen AH, Olofsson I, Chalmer MA, Olesen J, Hansen TF (2020) Higher burden of rare frameshift indels in genes related to synaptic transmission separate familial hemiplegic migraine from common types of migraine. J Med Genet 57(9):610–616. https://doi.org/10.1136/jmedgenet-2019-106640 - PubMed

Publication Types

Grant support