Display options
Share it on

Virus Genes. 2022 Jan 09; doi: 10.1007/s11262-021-01880-7. Epub 2022 Jan 09.

Trichodysplasia spinulosa polyomavirus small T antigen synergistically modulates S6 protein translation and DNA damage response pathways to shape host cell environment.

Virus genes

Deepika Narayanan, Danyal Tahseen, Brooke R Bartley, Stephen A Moore, Rebecca Simonette, Peter L Rady, Stephen K Tyring

Affiliations

  1. Department of Dermatology, McGovern Medical School at UT Health Science Center, 6431 Fannin Street, Houston, TX, 77030, USA.
  2. Rice University, Houston, TX, USA.
  3. Department of Dermatology, McGovern Medical School at UT Health Science Center, 6431 Fannin Street, Houston, TX, 77030, USA. [email protected].

PMID: 35000075 DOI: 10.1007/s11262-021-01880-7

Abstract

TSPyV is a viral agent linked to Trichodysplasia spinulosa, a disfiguring human skin disease which presents with hyperkeratotic spicule eruption in immunocompromised hosts. This proliferative disease state requires extensive modulation of the host cell environment. While the small T (sT) antigen of TSPyV has been postulated to cause widespread cellular perturbation, its specific substrates and their mechanistic connection are unclear. To identify the cellular substrates and pathways perturbed by TSPyV sT and propose a nuanced model that reconciles the multiple arms of TSPyV pathogenesis, changes in expression of several proteins and phospho-proteins in TSPyV sT expressing and TSPyV sT deletion mutant-expressing cell lysates were interrogated using Western blot assays. TSPyV sT expression exploits the DNA damage response pathway, by inducing hyperphosphorylation of ATM and 53BP1 and upregulation of BMI-1. Concurrently, sT dysregulates the S6 protein translation pathway via hyperphosphorylation of CDC2, p70 S6 kinase, S6, and PP1α. The S6

© 2021. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.

Keywords: DNA damage response; Molecular virology; Pathogenesis; Translational regulation; Trichodysplasia spinulosa (TS); Trichodysplasia spinulosa-associated polyomavirus (TSPyV); Virus-host interactions

References

  1. van der Meijden E, Janssens RW, Lauber C, Bouwes Bavinck JN, Gorbalenya AE, Feltkamp MC (2010) Discovery of a new human polyomavirus associated with trichodysplasia spinulosa in an immunocompromized patient. PLOS Pathog 6:e1001024 - PubMed
  2. Borgogna C, Albertini S, Zavattaro E et al (2019) Primary trichodysplasia spinulosa polyomavirus infection in a kidney transplant child displaying virus-infected decoy cells in the urine. J Med Virol 91(10):1896–1900. https://doi.org/10.1002/jmv.25519 - PubMed
  3. Prado J, Monezi T, Amorim A, Lino V, Paladino A, Boccardo E (2019) Human polyomaviruses and cancer: an overview. Clinics. https://doi.org/10.6061/clinics/2018/e558s - PubMed
  4. DeCaprio J, Garcea R (2013) A cornucopia of human polyomaviruses. Nat Rev Microbiol 11:264–276. https://doi.org/10.1038/nrmicro2992 - PubMed
  5. Kazem S, van der Meijden E, Wang RC et al (2014) Polyomavirus-associated trichodysplasia spinulosa involves hyperproliferation, pRB phosphorylation and upregulation of p16 and p21. PLoS One 9:e108947 - PubMed
  6. White MK, Gordon J, Khalili K (2013) The rapidly expanding family of human polyomaviruses: recent developments in understanding their life cycle and role in human pathology. PLoS Pathog 9(3):e1003206. https://doi.org/10.1371/journal.ppat.1003206 - PubMed
  7. Wu JH, Simonette RA, Nguyen HP, Doan HQ, Rady PL, Tyring SK (2016) Emerging differential roles of the pRb tumor suppressor in trichodysplasia spinulosa-associated polyomavirus and Merkel cell polyomavirus pathogeneses. J Clin Virol 76:40–43. https://doi.org/10.1016/j.jcv.2016.01.001 - PubMed
  8. Wu JH, Narayanan D, Limmer A, Simonette RA, Rady PL, Tyring SK (2019) Merkel cell polyomavirus (MCPyV) small T antigen induces DNA damage response. Intervirology 62:96–100. https://doi.org/10.1159/000501419 - PubMed
  9. Wu JH, Simonette RA, Nguyen HP, Rady PL, Tyring SK (2016) Small T-antigen of the TS-associated polyomavirus activates factors implicated in the MAPK pathway. J Eur Acad Dermatol Venereol 6:1061–1062 - PubMed
  10. Sheu JC, Tran J, Rady PL, Dao H, Tyring SK, Nguyen HP (2019) Polyomaviruses of the skin: integrating molecular and clinical advances in an emerging class of viruses. Brit J Dermatol 180:1302–1311. https://doi.org/10.1111/bjd.17592 - PubMed
  11. Maréchal A, Zou L (2013) DNA damage sensing by the ATM and ATR kinases. Cold Spring Harb Perspect Biol 5:1–17 - PubMed
  12. Meyuhas O (2015) Ribosomal protein s6 phosphorylation: four decades of research. Int Rev Cell Mol Biol 320:41–73. https://doi.org/10.1016/bs.ircmb.2015.07.006 - PubMed
  13. Belandia B, Brautigan D, Martinperez J (1994) Mol Cell Biol 14:200–206 - PubMed
  14. Li Y, Mitsuhashi S, Ikejo M et al (2012) Relationship between ATM and ribosomal protein S6 revealed by the chemical inhibition of Ser/Thr protein phosphatase type 1. Biosci Biotechnol Biochem 76:486–494. https://doi.org/10.1271/bbb.110774 - PubMed
  15. Nguyen HP, Patel A, Simonette RA, Rady P, Tyring SK (2014) Binding of the trichodysplasia spinulosa-associated polyomavirus small T antigen to protein phosphatase 2A: elucidation of a potential pathogenic mechanism in a rare skin disease. JAMA Dermatol 150:1234–1236 - PubMed
  16. Cho US, Morrone S, Sablina AA, Arroyo JD, Hahn WC, Xu W (2007) Structural basis of PP2A inhibition by small t antigen. PLoS Biol 5(8):e202 - PubMed
  17. Gupta A, Hunt CR, Chakraborty S, Pandita RK, Yordy J, Ramnarain DB, Horikoshi N, Pandita TK (2014) Role of 53BP1 in the regulation of DNA double-strand break repair pathway choice. Radiat Res 181(1):1–8 - PubMed
  18. Liu J, Cao L, Chen J, Song S, Lee IH, Quijano C, Liu H, Keyvanfar K, Chen H, Cao LY, Ahn BH (2009) Bmi1 regulates mitochondrial function and the DNA damage response pathway. Nature 459(7245):387–392 - PubMed
  19. Bhattacharya R, Mustafi SB, Street M, Dey A, Dwivedi SK (2015) Bmi-1: at the crossroads of physiological and pathological biology. Genes Dis 2(3):225–239 - PubMed
  20. Forester CM, Maddox J, Louis JV, Goris J, Virshup DM (2007) Control of mitotic exit by PP2A regulation of Cdc25C and Cdk1. Proc Natl Acad Sci USA 104:19867–19872. https://doi.org/10.1073/pnas.0709879104 - PubMed
  21. De Smedt V, Poulhe R, Cayla X et al (2002) Thr-161 phosphorylation of monomeric Cdc2. J Biol Chem 32:28592–28600. https://doi.org/10.1074/jbc.m202742200 - PubMed
  22. Otero JJ, Tihan T (2011) Morphological analysis of CDC2 and glycogen synthase kinase 3β phosphorylation as markers of G2 → M transition in glioma. Pathol Res Int 216086:1–19. https://doi.org/10.4061/2011/216086 - PubMed
  23. Shah OJ, Ghosh S, Hunter T (2003) Mitotic regulation of ribosomal S6 kinase 1 involves Ser/Thr, Pro phosphorylation of consensus and non-consensus sites by Cdc2. J Biol Chem 278:16433–16442. https://doi.org/10.1074/jbc.m300435200 - PubMed
  24. Biever A, Valjent E, Puighermanal E (2015) Ribosomal protein S6 phosphorylation in the nervous system: from regulation to function. Front Mol Neurosci. https://doi.org/10.3389/fnmol.2015.00075 - PubMed
  25. Yu JSL, Cui W (2016) Proliferation, survival and metabolism: the role of PI3K/AKT/mTOR signalling in pluripotency and cell fate determination. Development 143:3050–3060. https://doi.org/10.1242/dev.137075 - PubMed
  26. Liu CWY, Wang R, Dohadwala M, Schönthal AH, Villa-Moruzzi E, Berndt N (1999) Inhibitory phosphorylation of PP1α catalytic subunit during the G1/S transition. J Biol Chem 274:29470–29475. https://doi.org/10.1074/jbc.274.41.29470 - PubMed
  27. Ramos F, Villoria MT, Alonso-Rodríguez E, Clemente-Blanco A (2019) Role of protein phosphatases PP1, PP2A, PP4 and Cdc14 in the DNA damage response. Cell Stress 3:70–85 - PubMed
  28. Peng A, Lewellyn AL, Schiemann WP, Maller JL (2010) Repo-man controls a protein phosphatase 1-dependent threshold for DNA damage checkpoint activation. Curr Biol 20:387–396. https://doi.org/10.1016/j.cub.2010.01.020 - PubMed
  29. Cannan WJ, Pederson DS (2016) Mechanisms and consequences of double-strand DNA break formation in chromatin. J Cell Physiol 231:3–14. https://doi.org/10.1002/jcp.25048 - PubMed
  30. Matsuoka S, Ballif BA, Smogorzewska A et al (2007) ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Sci 316:1160–1166 - PubMed
  31. Stokes MP, Rush J, Macneill J et al (2007) Profiling of UV-induced ATM/ATR signaling pathways. Proc Natl Acad Sci USA 104:19855–19860 - PubMed
  32. Mirza-Aghazadeh-Attari M, Mohammadzadeh A, Yousefi B, Mihanfar A, Karimian A, Majidinia M (2019) 53BP1: a key player of DNA damage response with critical functions in cancer. DNA Repair 73:110–119 - PubMed
  33. Xiong X, Du Z, Wang Y et al (2015) 53BP1 promotes microhomology-mediated end-joining in G1-phase cells. Nucleic Acids Res 43:1659–1670 - PubMed
  34. Panier S, Boulton SJ (2014) Double-strand break repair: 53BP1 comes into focus. Nat Rev Mol Cell Biol 15:7–18 - PubMed
  35. Facchino S, Abdouh M, Chatoo W, Bernier G (2010) BMI1 confers radioresistance to normal and cancerous neural stem cells through recruitment of the DNA damage response machinery. J Neurosci 30:10096–10111. https://doi.org/10.1523/jneurosci.1634-10.2010 - PubMed
  36. Bill CA, Summers J (2004) Genomic DNA double-strand breaks are targets for hepadnaviral DNA integration. Proc Natl Acad Sci USA 101:11135–11140 - PubMed
  37. Wu JH, Narayanan D, Limmer AL, Simonette RA, Rady PL, Tyring SK (2019) Merkel cell polyomavirus small T antigen induces DNA damage response. Intervirology 62(2):96–100 - PubMed
  38. Turnell AS, Grand RJ (2012) DNA viruses and the cellular DNA-damage response. J Gen Virol 93:2076–2097. https://doi.org/10.1099/vir.0.044412-0 - PubMed

Publication Types