Display options
Share it on

Mol Cell Biochem. 1994 Apr-May;133:277-86. doi: 10.1007/BF01267960.

Compartmentation of creatine kinases during perinatal development of mammalian heart.

Molecular and cellular biochemistry

J A Hoerter, R Ventura-Clapier, A Kuznetsov

Affiliations

  1. CJF INSERM 92-11, Université Paris-Sud, Faculté de Pharmacie, Chatenay Malabry, France.

PMID: 7808459 DOI: 10.1007/BF01267960

Abstract

Maturation of the cardiac cell is characterized by increasing diversity of isozymic expression of creatine kinases. Expression of the M-CK isozyme always precedes that of mitochondrial isozyme (mi-CK), however the expression of an isoform does not inform about its localization or cellular function. The functional role of isozymes binding to sites of energy utilization and production characteristic of the adult myocardium can be evidenced by the functional coupling of M-CK to myofibrillar ATPase and mito-CK to translocase in Triton X-100 and saponin skinned fibers. Functional activity of M-CK and mito-CK were investigated during perinatal development. Both functional activities appear during late fetal life in species mature at birth like guinea pig, and in the first postnatal weeks in immature species like rat or rabbit. Thus, the functional activity of bound CK isozymes is not associated with birth per se but with the general process of cell maturation. Localization of CK in the cytosol appears optimal for the transfer of glycolytic production of ATP to sites of utilization in an immature heart. During cell maturation, the increasing contribution of oxidative phosphorylation to ATP production, the apparition and binding of mi-CK to mitochondria, the binding of M-CK to myofibrils, turn the cell in a compartmentalized system of energy production. This provides the cellular basis for energy transfer by the PCr-Cr-CK system between sites of ATP production and utilization. Compartmentation of both Ca handling and energy turnover leads to a highly structured cell organization and could be essential for the efficiency of heart function.

References

  1. Biochem Biophys Res Commun. 1979 Jun 13;88(3):895-906 - PubMed
  2. Circ Res. 1980 Apr;46(4):503-12 - PubMed
  3. Prog Cardiovasc Dis. 1972 Jul-Aug;15(1):87-111 - PubMed
  4. Circ Res. 1988 Aug;63(2):448-56 - PubMed
  5. Annu Rev Physiol. 1985;47:707-25 - PubMed
  6. Dev Biol. 1977 May;57(1):109-17 - PubMed
  7. Cell Muscle Motil. 1985;6:239-85 - PubMed
  8. Annu Rev Biochem. 1987;56:89-124 - PubMed
  9. J Mol Cell Cardiol. 1972 Feb;4(1):1-10 - PubMed
  10. J Cell Physiol. 1990 Mar;142(3):566-73 - PubMed
  11. Annu Rev Biochem. 1985;54:831-62 - PubMed
  12. Int Rev Cytol. 1991;124:137-86 - PubMed
  13. Circ Res. 1974 Sep;35 Suppl 3:138-49 - PubMed
  14. Circ Res. 1991 Mar;68(3):662-73 - PubMed
  15. Anesthesiology. 1990 Jul;73(1):137-45 - PubMed
  16. Biochim Biophys Acta. 1984 Apr 16;803(4):265-70 - PubMed
  17. Biochemistry. 1988 Mar 22;27(6):2165-72 - PubMed
  18. J Biol Chem. 1986 Nov 15;261(32):15257-65 - PubMed
  19. J Muscle Res Cell Motil. 1984 Oct;5(5):527-34 - PubMed
  20. Biochemistry. 1991 Mar 12;30(10):2585-93 - PubMed
  21. Pediatr Res. 1981 Aug;15(8):1128-33 - PubMed
  22. Circ Res. 1981 Apr;48(4):561-8 - PubMed
  23. Am J Physiol. 1992 Apr;262(4 Pt 2):H1022-8 - PubMed
  24. Am J Physiol. 1993 Aug;265(2 Pt 1):C375-8 - PubMed
  25. Circ Res. 1990 Sep;67(3):574-9 - PubMed
  26. J Biol Chem. 1985 Mar 25;260(6):3839-43 - PubMed
  27. Circ Res. 1991 Sep;69(3):665-76 - PubMed
  28. Eur J Cell Biol. 1982 Apr;27(1):62-73 - PubMed
  29. Biochim Biophys Acta. 1971 Dec 7;253(2):360-72 - PubMed
  30. Am J Physiol. 1977 Dec;233(6):H707-10 - PubMed
  31. Biochem Biophys Res Commun. 1986 Nov 26;141(1):319-25 - PubMed
  32. J Biol Chem. 1992 Jul 25;267(21):14592-7 - PubMed
  33. Am J Physiol. 1982 Jul;243(1):H87-93 - PubMed
  34. J Gen Physiol. 1987 May;89(5):815-37 - PubMed
  35. Biochem Biophys Res Commun. 1975 May 5;64(1):384-90 - PubMed
  36. J Biol Chem. 1993 Apr 25;268(12):8418-21 - PubMed
  37. Am J Physiol. 1984 Apr;246(4 Pt 2):H615-25 - PubMed
  38. Am J Physiol. 1978 Nov;235(5):H475-81 - PubMed
  39. Biochim Biophys Acta. 1990 Jun 21;1049(2):182-8 - PubMed
  40. Circ Res. 1991 Nov;69(5):1380-8 - PubMed
  41. Anat Embryol (Berl). 1990;182(2):195-203 - PubMed
  42. Biochem J. 1992 Jan 1;281 ( Pt 1):21-40 - PubMed
  43. Ann N Y Acad Sci. 1978 Apr 28;307:491-522 - PubMed
  44. Biochim Biophys Acta. 1980 Sep 5;592(2):197-210 - PubMed
  45. Physiol Res. 1993;42(1):1-6 - PubMed
  46. J Cell Biol. 1969 May;41(2):651-7 - PubMed
  47. Am J Physiol. 1972 Jun;222(6):1488-93 - PubMed
  48. Biol Neonate. 1978;33(3-4):144-61 - PubMed
  49. J Appl Physiol (1985). 1986 Aug;61(2):482-5 - PubMed
  50. J Mol Cell Cardiol. 1981 Aug;13(8):725-40 - PubMed
  51. Am J Physiol. 1991 Jul;261(1 Pt 2):H1-8 - PubMed
  52. J Mol Cell Cardiol. 1992 Jul;24(7):669-81 - PubMed
  53. Biochem Biophys Res Commun. 1975 Oct 6;66(3):988-94 - PubMed
  54. J Mol Cell Cardiol. 1974 Oct;6(5):405-13 - PubMed
  55. FEBS Lett. 1985 Sep 2;188(2):341-4 - PubMed
  56. Pflugers Arch. 1985 May;404(2):157-61 - PubMed
  57. Biochim Biophys Acta. 1987 Jun 29;892(2):191-6 - PubMed
  58. Annu Rev Physiol. 1974;36:187-207 - PubMed
  59. Biol Neonate. 1982;42(5-6):208-16 - PubMed
  60. J Mol Cell Cardiol. 1977 Aug;9(8):651-60 - PubMed
  61. Biochem Med Metab Biol. 1987 Jun;37(3):374-84 - PubMed
  62. Am J Physiol. 1990 May;258(5 Pt 2):H1274-80 - PubMed

Substances

MeSH terms

Publication Types