Display options
Share it on

Plant Cell. 1999 Jul;11(7):1277-92. doi: 10.1105/tpc.11.7.1277.

Elevated glutathione biosynthetic capacity in the chloroplasts of transgenic tobacco plants paradoxically causes increased oxidative stress .

The Plant cell

Creissen, Firmin, Fryer, Kular, Leyland, Reynolds, Pastori, Wellburn, Baker, Wellburn, Mullineaux

Affiliations

  1. John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, United Kingdom.

PMID: 10402429 PMCID: PMC144277 DOI: 10.1105/tpc.11.7.1277

Abstract

Glutathione (GSH), a major antioxidant in most aerobic organisms, is perceived to be particularly important in plant chloroplasts because it helps to protect the photosynthetic apparatus from oxidative damage. In transgenic tobacco plants overexpressing a chloroplast-targeted gamma-glutamylcysteine synthetase (gamma-ECS), foliar levels of GSH were raised threefold. Paradoxically, increased GSH biosynthetic capacity in the chloroplast resulted in greatly enhanced oxidative stress, which was manifested as light intensity-dependent chlorosis or necrosis. This phenotype was associated with foliar pools of both GSH and gamma-glutamylcysteine (the immediate precursor to GSH) being in a more oxidized state. Further manipulations of both the content and redox state of the foliar thiol pools were achieved using hybrid transgenic plants with enhanced glutathione synthetase or glutathione reductase activity in addition to elevated levels of gamma-ECS. Given the results of these experiments, we suggest that gamma-ECS-transformed plants suffered continuous oxidative damage caused by a failure of the redox-sensing process in the chloroplast.

References

  1. Plant J. 1995 Aug;8(2):167-75 - PubMed
  2. Plant Physiol. 1996 Nov;112(3):1071-1078 - PubMed
  3. Proc Natl Acad Sci U S A. 1980 Dec;77(12):7347-51 - PubMed
  4. Plant Cell. 1996 Nov;8(11):1991-2001 - PubMed
  5. Plant Physiol. 1995 May;108(1):411-8 - PubMed
  6. EMBO J. 1993 May;12(5):2005-15 - PubMed
  7. Plant Cell. 1991 Aug;3(8):783-92 - PubMed
  8. Anal Biochem. 1981 Jul 1;114(2):383-7 - PubMed
  9. Planta. 1995;197(2):422-5 - PubMed
  10. Biochem Soc Trans. 1996 Aug;24(3):829-35 - PubMed
  11. Cell. 1994 May 20;77(4):565-77 - PubMed
  12. Science. 1996 Sep 27;273(5283):1853-6 - PubMed
  13. Plant Physiol. 1988 Apr;86(4):1013-9 - PubMed
  14. Plant Physiol. 1985 Oct;79(2):458-67 - PubMed
  15. Planta. 1996;198(1):151-7 - PubMed
  16. Nucleic Acids Res. 1986 Jun 11;14(11):4393-400 - PubMed
  17. Plant Physiol. 1996 Apr;110(4):1367-1379 - PubMed
  18. Methods Enzymol. 1984;105:121-6 - PubMed
  19. Plant Cell. 1997 Sep;9(9):1559-1572 - PubMed
  20. Plant Cell. 1997 Apr;9(4):627-40 - PubMed
  21. Nucleic Acids Res. 1984 Dec 21;12(24):9299-307 - PubMed
  22. Cell. 1994 May 20;77(4):551-63 - PubMed
  23. Plant Mol Biol. 1997 Nov;35(5):641-54 - PubMed
  24. Nucleic Acids Res. 1984 Nov 26;12(22):8711-21 - PubMed
  25. Plant J. 1998 Feb;13(3):375-9 - PubMed
  26. Cell. 1994 Nov 18;79(4):583-93 - PubMed
  27. Biochim Biophys Acta. 1975 Jul 14;399(1):10-22 - PubMed
  28. Biochem J. 1986 Dec 15;240(3):709-15 - PubMed
  29. Biochem J. 1983 Mar 15;210(3):899-903 - PubMed
  30. Plant Physiol. 1988 May;87(1):206-10 - PubMed
  31. Proc Natl Acad Sci U S A. 1993 Apr 1;90(7):3108-12 - PubMed
  32. Anal Chem. 1967 Feb;39(2):271-2 - PubMed
  33. Plant Physiol. 1993 Feb;101(2):561-566 - PubMed
  34. Plant Physiol. 1995 Sep;109(1):203-12 - PubMed
  35. Plant Mol Biol. 1992 Feb;18(3):623-7 - PubMed
  36. Nucleic Acids Res. 1988 Dec 9;16(23):11380 - PubMed
  37. Planta. 1997;203(3):362-72 - PubMed
  38. Nucleic Acids Res. 1989 Nov 25;17(22):9494 - PubMed
  39. EMBO J. 1997 Aug 15;16(16):4806-16 - PubMed
  40. EMBO J. 1989 Jan;8(1):31-8 - PubMed
  41. Plant Cell. 1997 Jul;9(7):1157-1168 - PubMed

Publication Types