Display options
Share it on

J Thromb Thrombolysis. 1996;3(3):225-237. doi: 10.1007/BF00181665.

Monophosphoryl Lipid A: A Novel Agent for Inducing Pharmacologic Myocardial Preconditioning.

Journal of thrombosis and thrombolysis

Elliott

Affiliations

  1. Division of Pharmaceutical Development, Ribi ImmunoChem Research, Inc., 553 Old Corvallis Road, Hamilton, MT 59840.

PMID: 10613986 DOI: 10.1007/BF00181665

Abstract

Myocardial tissue appears to possess an endogenous protective mechanism whereby brief ischemic periods precondition cells to better withstand both reversible and irreversible injury associated with prolonged subsequent ischemic events. Protection develops within minutes of transient ischemia, dissipates within 1-2 hours, and then reappears 12-24 hours following the preconditioning ischemic event. This phenomena, known as ischemic preconditioning (IP), is associated with limitation of infarct size, contractile stunning, and ventricular arrhythmias in postischemic/reperfused hearts. Preconditioned myocardium displays reduced anerobic metabolism. ATPase function, and, hence, improved ATP preservation during ischemia, reduced cytosolic calcium concentrations during reperfusion, and preservation of ultrastructural and myofilament integrity. Efforts to dissect the intracellular signal transduction pathway operative in IP have met with some success. Ischemic preconditioning is associated w ith activation of myocyte Gi protein-coupled receptors such as adenosine and acetylcholine, activation of PKC, production of nitric oxide, and, eventually, opening of ATP-sensitive potassium (KATP) channels. Preconditioning can also be elicited by pharmacologic means using adenosine receptor agonists, activators of PKC, nitric oxide inducers, and KATP openers, among other strategies. Monophosphoryl lipid A (MLA), a nontoxic derivative of the endotoxin pharmacophore lipid A, has been evaluated for cardioprotective activity in numerous preclinical models of cardiac ischemia/reperfusion injury. MLA, when given as a single dose pretreatment in various canine and rabbit models 12-24 hours prior to ischemia, limits infarct size and reduces regional and global contractile dysfunction. Cardioprotection in various models is associated with preservation of ATP during ischemia, enhanced 5'-nucleotidase and adenosine kinase function during reperfusion, and in these aspects mimics ischemic pr econditioning. Priming of KATP channel for enhanced opening during ischemia may be a prerequisite for the cardioprotective activity of MLA and is another feature establishing a similarity between MLA and ischemia induced preconditioning. Efforts continue to further our understanding regarding how MLA may regulate KATP channel and thereby precondition myocardium. Ongoing studies include evaluation of a possible direct effect on the KATP channel, investigation of the ability of MLA to induce a secondary mediator of potassium channel modulation, and evaluation of MLA's ability to phosphorylate the KATP channel as a consequence of kinase activation. Pretreatment with MLA represents a novel method of pharmacologically preconditioning myocardium, displaying a time course for development similar to that of the second window of ischemic preconditioning. Prior clinical experience with MLA indicates that intravenous doses of up to at least 20 µg/kg may be given safely to humans. The drug is c urrently being evaluated in patients undergoing coronary artery bypass engraftment surgery and may prove to be a useful way to protect myocardium from anticipated ischemic events.

References

  1. Biochem Biophys Res Commun. 1995 Feb 6;207(1):25-32 - PubMed
  2. Crit Care Med. 1995 Jan;23(1):9-17 - PubMed
  3. Circ Res. 1984 Mar;54(3):277-85 - PubMed
  4. Mol Cell Biochem. 1996 Mar 9;156(1):1-8 - PubMed
  5. J Cardiovasc Pharmacol. 1995 Jan;25(1):163-7 - PubMed
  6. Circ Res. 1992 Feb;70(2):223-33 - PubMed
  7. Life Sci. 1994;55(14):1101-8 - PubMed
  8. Am J Physiol. 1988 May;254(5 Pt 2):H833-9 - PubMed
  9. J Mol Cell Cardiol. 1994 May;26(5):661-8 - PubMed
  10. Am J Physiol. 1991 Dec;261(6 Pt 2):H1675-86 - PubMed
  11. J Clin Invest. 1991 Jun;87(6):2056-66 - PubMed
  12. J Biol Chem. 1982 Oct 10;257(19):11808-15 - PubMed
  13. Circulation. 1990 Aug;82(2):609-19 - PubMed
  14. Am J Physiol. 1994 Mar;266(3 Pt 2):H1145-52 - PubMed
  15. Am J Physiol. 1993 Aug;265(2 Pt 2):H504-8 - PubMed
  16. Circulation. 1992 Oct;86(4):1310-6 - PubMed
  17. Am J Physiol. 1989 Dec;257(6 Pt 2):R1265-81 - PubMed
  18. Cardiovasc Res. 1993 May;27(5):832-8 - PubMed
  19. Proc Soc Exp Biol Med. 1990 Feb;193(2):167-70 - PubMed
  20. Circ Res. 1992 Jul;71(1):58-69 - PubMed
  21. Immunopharmacology. 1995 Feb;29(1):53-63 - PubMed
  22. Chest. 1995 Feb;107(2):307-10 - PubMed
  23. Am J Physiol. 1990 Sep;259(3 Pt 2):H820-6 - PubMed
  24. J Cardiovasc Pharmacol. 1993 Oct;22(4):653-63 - PubMed
  25. J Biol Response Mod. 1990 Oct;9(5):480-91 - PubMed
  26. Rev Infect Dis. 1984 Jul-Aug;6(4):439-43 - PubMed
  27. J Pharmacol Exp Ther. 1994 Aug;270(2):681-9 - PubMed
  28. J Mol Cell Cardiol. 1996 Jan;28(1):197-208 - PubMed
  29. J Mol Cell Cardiol. 1995 Jan;27(1):223-9 - PubMed
  30. Circulation. 1993 Sep;88(3):1264-72 - PubMed
  31. Am J Physiol. 1993 Apr;264(4 Pt 2):H1200-7 - PubMed
  32. Surgery. 1991 Aug;110(2):365-9 - PubMed
  33. Circ Res. 1994 Sep;75(3):586-90 - PubMed
  34. Cancer Res. 1981 Jul;41(7):2654-7 - PubMed
  35. Circulation. 1994 Apr;89(4):1769-75 - PubMed
  36. Circulation. 1993 Mar;87(3):893-9 - PubMed
  37. Free Radic Res Commun. 1991;12-13 Pt 2:725-35 - PubMed
  38. Circulation. 1995 Jun 1;91(11):2810-8 - PubMed
  39. Biochem Pharmacol. 1987 Jul 1;36(13):2101-7 - PubMed
  40. J Surg Res. 1992 Apr;52(4):395-400 - PubMed
  41. Infect Immun. 1990 Aug;58(8):2429-37 - PubMed
  42. Basic Res Cardiol. 1994 Nov-Dec;89(6):563-76 - PubMed
  43. J Clin Invest. 1994 May;93(5):2197-205 - PubMed
  44. Circ Res. 1990 Apr;66(4):913-31 - PubMed
  45. Biochem Biophys Res Commun. 1993 Apr 30;192(2):553-60 - PubMed
  46. Circulation. 1992 Feb;85(2):659-65 - PubMed
  47. J Pharmacol Exp Ther. 1994 Sep;270(3):1071-6 - PubMed
  48. Agents Actions Suppl. 1992;38 ( Pt 3):413-20 - PubMed
  49. Biochem Biophys Res Commun. 1990 Dec 14;173(2):541-7 - PubMed
  50. Am J Physiol. 1992 Dec;263(6 Pt 2):H1650-8 - PubMed
  51. Circ Res. 1993 Dec;73(6):1193-201 - PubMed
  52. Circulation. 1991 Jul;84(1):350-6 - PubMed
  53. Cardiovasc Res. 1994 Nov;28(11):1700-6 - PubMed
  54. Cardiovasc Drugs Ther. 1990 Apr;4(2):465-74 - PubMed
  55. Circulation. 1991 Jul;84(1):400-11 - PubMed
  56. Circulation. 1992 Feb;85(2):779-89 - PubMed
  57. Proc Natl Acad Sci U S A. 1989 Apr;86(7):2516-20 - PubMed
  58. Am J Cardiol. 1989 Jun 20;63(21):11J-17J - PubMed
  59. J Surg Res. 1990 Aug;49(2):126-31 - PubMed
  60. Annu Rev Pharmacol Toxicol. 1986;26:201-24 - PubMed
  61. Br J Pharmacol. 1996 Apr;117(8):1685-92 - PubMed
  62. Trends Pharmacol Sci. 1994 Jan;15(1):19-25 - PubMed
  63. Circulation. 1986 Nov;74(5):1124-36 - PubMed
  64. J Clin Invest. 1995 Apr;95(4):1446-56 - PubMed
  65. Virchows Arch B Cell Pathol Incl Mol Pathol. 1986;52(4):327-41 - PubMed
  66. Circ Res. 1987 May;60(5):700-7 - PubMed
  67. Circ Shock. 1994 Jul;43(3):107-14 - PubMed
  68. Pharmacology. 1995 Sep;51(3):152-9 - PubMed
  69. Eur J Pharmacol. 1991 Aug 6;200(2-3):375-6 - PubMed
  70. J Biol Response Mod. 1984;3(1):1-9 - PubMed
  71. Circ Res. 1995 Sep;77(3):611-21 - PubMed
  72. J Cardiovasc Pharmacol. 1994;24 Suppl 4:S28-34 - PubMed
  73. J Mol Cell Cardiol. 1984 Nov;16(11):1075-9 - PubMed
  74. Cardiovasc Res. 1995 Feb;29(2):269-74 - PubMed

Publication Types