Display options
Share it on

Proc Natl Acad Sci U S A. 1997 Jul 08;94(14):7667-72. doi: 10.1073/pnas.94.14.7667.

In vitro reconstitution of the photosystem I light-harvesting complex LHCI-730: heterodimerization is required for antenna pigment organization.

Proceedings of the National Academy of Sciences of the United States of America

V H Schmid, K V Cammarata, B U Bruns, G W Schmidt

Affiliations

  1. Department of Botany, University of Georgia, Athens, GA 30602-7271, USA.

PMID: 11038558 PMCID: PMC23880 DOI: 10.1073/pnas.94.14.7667

Abstract

Here we describe the in vitro reconstitution of photosystem I light-harvesting complexes with pigments and proteins (Lhca1 and Lhca4) obtained by overexpression of tomato Lhca genes in Escherichia coli. Using Lhca1 and Lhca4 individually for reconstitution results in monomeric pigment-proteins, whereas a combination thereof yields a dimeric complex. Interactions of the apoproteins is highly specific, as reconstitution of either of the two constituent proteins in combination with a light-harvesting protein of photosystem II does not result in dimerization. The reconstituted Lhca1/4, but not complexes obtained with either Lhca1 or Lhca4 alone, closely resembles the native LHCI-730 dimer from tomato leaves with regard to spectroscopic properties, pigment composition, and stoichiometry. Monomeric complexes of Lhca1 or Lhca4 possess lower pigment/protein ratios, indicating that interactions of the two subunits not only facilitates pigment reorganization but also recruitment of additional pigments. In addition to higher averages of chlorophyll a/b ratios in monomeric complexes than in LHCI-730, comparative fluorescence and CD spectra demonstrate that heterodimerization involves preferential ligation of more chlorophyll b.

References

  1. Nature. 1994 Feb 17;367(6464):614-21 - PubMed
  2. Nature. 1970 Aug 15;227(5259):680-5 - PubMed
  3. Eur J Biochem. 1992 May 15;206(1):209-15 - PubMed
  4. FEBS Lett. 1991 Mar 25;280(2):229-34 - PubMed
  5. EMBO J. 1994 Aug 1;13(15):3423-9 - PubMed
  6. Biochem Soc Trans. 1993 Feb;21(1):15-8 - PubMed
  7. Plant Physiol. 1994 Jan;104(1):227-234 - PubMed
  8. Plant Physiol. 1995 Feb;107(2):565-74 - PubMed
  9. Eur J Biochem. 1992 Apr 1;205(1):71-6 - PubMed
  10. Trends Biochem Sci. 1991 May;16(5):181-6 - PubMed
  11. Photosynth Res. 1995 Jul;45(1):41-9 - PubMed
  12. Planta. 1990 May;181(2):204-11 - PubMed
  13. Anal Biochem. 1985 Oct;150(1):76-85 - PubMed
  14. Biochemistry. 1995 Aug 15;34(32):10224-8 - PubMed
  15. J Biol Chem. 1991 Sep 5;266(25):16745-54 - PubMed
  16. Plant Physiol. 1980 May;65(5):814-22 - PubMed
  17. Plant Mol Biol. 1997 Jan;33(1):157-67 - PubMed
  18. Photosynth Res. 1995 Jun;44(3):287-95 - PubMed
  19. Biochim Biophys Acta. 1994 Feb 8;1184(1):1-19 - PubMed
  20. Annu Rev Plant Physiol Plant Mol Biol. 1996 Jun;47:685-714 - PubMed
  21. Eur J Biochem. 1993 Aug 1;215(3):809-16 - PubMed
  22. Eur J Biochem. 1996 May 15;238(1):112-20 - PubMed
  23. Proc Natl Acad Sci U S A. 1987 Jan;84(1):146-50 - PubMed
  24. Photochem Photobiol. 1993 Jan;57(1):139-42 - PubMed
  25. Arch Biochem Biophys. 1961 May;93:413-22 - PubMed
  26. Anal Biochem. 1985 Dec;151(2):369-74 - PubMed
  27. Plant Cell. 1995 Jun;7(6):689-704 - PubMed
  28. Methods Enzymol. 1987;155:416-33 - PubMed
  29. Plant Physiol. 1996 Sep;112(1):409-20 - PubMed
  30. Eur J Biochem. 1987 Mar 2;163(2):221-30 - PubMed
  31. Photosynth Res. 1990 Mar;23(3):331-43 - PubMed
  32. Eur J Biochem. 1993 Mar 1;212(2):297-303 - PubMed
  33. Biochemistry. 1996 Jul 2;35(26):8572-9 - PubMed
  34. Eur J Biochem. 1996 Dec 1;242(2):288-92 - PubMed
  35. Plant Physiol. 1994 Nov;106(3):841-848 - PubMed
  36. Proc Natl Acad Sci U S A. 1987 Dec;84(24):8844-8 - PubMed
  37. Photosynth Res. 1992 Sep;33(3):235-50 - PubMed
  38. Biochemistry. 1992 Mar 17;31(10):2779-89 - PubMed

Publication Types