Display options
Share it on

Curr Infect Dis Rep. 1999 Jun;1(2):153-159. doi: 10.1007/s11908-996-0023-7.

Acute Meningitis.

Current infectious disease reports

Pfister, Koedel, Paul

Affiliations

  1. Department of Neurology, Klinikum Grosshadern, Ludwig-Maximilians-University of Munich, Marchioninistr. 15, D-81377 Munich, Germany.

PMID: 11095782 DOI: 10.1007/s11908-996-0023-7

Abstract

Recent major epidemiologic trends in bacterial meningitis include a dramatic decline in the incidence of Haemophilus influenzae meningitis since the introduction of the protein-conjugated H. influenzae vaccines, and a worldwide increase in infections with antibiotic-resistant strains of bacterial pathogens. Cases of meningitis caused by resistant strains require an alternative therapeutic strategy. Animal studies have identified inflammatory mediators, eg, chemokines, excitatory amino acids, and endothelins, which are involved in the pathophysiology of bacterial meningitis. There is increasing evidence that reactive oxygen species (ROS), reactive nitrogen species, peroxynitrite, and matrix metalloproteinases contribute to brain damage during bacterial meningitis. The cytotoxic effects of ROS and peroxynitrite include the initiation of lipid peroxidation and the induction of DNA single-strand breakage. Damaged DNA activates poly(ADP-ribose) polymerase (PARP). Recent experimental data suggest that lipid peroxidation and PARP activation play a role in the development of meningitis-associated intracranial complications and brain injury. Agents that interfere with the production of ROS and peroxynitrite, and interfere with lipid peroxidation and PARP activation, may represent novel, therapeutic strategies by which meningitis-associated brain damage can be limited, therefore improving the outcome of this serious disease.

References

  1. Clin Infect Dis. 1999 Jan;28(1):152-3 - PubMed
  2. Arch Intern Med. 1997 Feb 24;157(4):425-30 - PubMed
  3. JAMA. 1997 Sep 17;278(11):925-31 - PubMed
  4. J Cereb Blood Flow Metab. 1997 Sep;17 (9):985-91 - PubMed
  5. Lancet. 1997 Jun 28;349(9069):1886-7 - PubMed
  6. N Engl J Med. 1998 Sep 24;339(13):868-74 - PubMed
  7. Presse Med. 1998 Jun 27;27(23):1177-82 - PubMed
  8. Inflamm Res. 1997 Oct;46(10):382-91 - PubMed
  9. J Immunol. 1997 Feb 15;158(4):1956-64 - PubMed
  10. J Infect Dis. 1998 Jan;177(1):102-6 - PubMed
  11. Postgrad Med. 1998 Mar;103(3):102-117 - PubMed
  12. Medicine (Baltimore). 1998 Sep;77(5):313-36 - PubMed
  13. Clin Infect Dis. 1997 Jun;24(6):1240-2 - PubMed
  14. J Neurol. 1998 Feb;245(2):87-92 - PubMed
  15. Clin Infect Dis. 1997 Aug;25(2):329-30 - PubMed
  16. N Engl J Med. 1997 Mar 6;336(10):708-16 - PubMed
  17. J Clin Invest. 1996 Dec 1;98(11):2632-9 - PubMed
  18. J Infect. 1997 May;34(3):227-35 - PubMed
  19. Eur J Pharmacol. 1998 May 29;350(1):1-19 - PubMed
  20. Neurology. 1999 Mar 23;52(5):1003-9 - PubMed
  21. N Engl J Med. 1997 Oct 2;337(14):970-6 - PubMed
  22. Brain Pathol. 1999 Jan;9(1):57-67 - PubMed
  23. Neurosci Lett. 1997 Mar 28;225(1):33-6 - PubMed
  24. Ann Neurol. 1998 Oct;44(4):592-600 - PubMed
  25. J Infect Dis. 1998 Sep;178(3):854-7 - PubMed
  26. J Infect Dis. 1998 Mar;177(3):692-700 - PubMed
  27. Proc Natl Acad Sci U S A. 1998 Mar 31;95(7):3867-72 - PubMed
  28. J Neuroimmunol. 1998 Apr 15;84(2):143-50 - PubMed
  29. Neurosci Lett. 1998 Feb 6;242(1):5-8 - PubMed
  30. Neurosci Lett. 1997 Nov 28;238(1-2):25-8 - PubMed
  31. Clin Infect Dis. 1997 Jan;24 Suppl 1:S85-8 - PubMed
  32. Nature. 1998 Apr 9;392(6676):565-8 - PubMed
  33. Trends Neurosci. 1998 Feb;21(2):75-80 - PubMed
  34. J Neuroimmunol. 1998 Jul 1;87(1-2):156-61 - PubMed
  35. Lancet. 1997 Apr 19;349(9059):1179-80 - PubMed
  36. J Neuroimmunol. 1998 May 1;85(1):33-43 - PubMed
  37. J Cereb Blood Flow Metab. 1998 Jan;18(1):67-74 - PubMed
  38. Ann Clin Biochem. 1998 May;35 ( Pt 3):408-14 - PubMed

Publication Types