Display options
Share it on

J Am Chem Soc. 2001 Jun 27;123(25):6127-41. doi: 10.1021/ja010166f.

The ozonolysis of acetylene--a quantum chemical investigation.

Journal of the American Chemical Society

D Cremer, R Crehuet, J Anglada

Affiliations

  1. Department of Theoretical Chemistry, Göteborg University, Reutersgatan 2, S-41320 Göteborg, Sweden.

PMID: 11414847 DOI: 10.1021/ja010166f

Abstract

The ozonolysis of acetylene was investigated using CCSD(T), CASPT2, and B3LYP-DFT in connection with a 6-311+G(2d,2p) basis set. The reaction is initiated by the formation of a van der Waals complex followed by a [4pi + 2pi] cycloaddition between ozone and acetylene (activation enthalpy DeltaH(a)(298) = 9.6 kcal/mol; experiment, 10.2 kcal/mol), yielding 1,2,3-trioxolene, which rapidly opens to alpha-ketocarbonyl oxide 5. Alternatively, an O atom can be transferred from ozone to acetylene (DeltaH(a)(298) = 15.6 kcal/mol), thus leading to formyl carbene, which can rearrange to oxirene or ketene. The key compound in the ozonolysis of acetylene is 5 because it is the starting point for the isomerization to the corresponding dioxirane 19 (DeltaH(a)(298) = 16.9 kcal/mol), for the cyclization to trioxabicyclo[2.1.0]pentane 10 (DeltaH(a)(298) = 19.5 kcal/mol), for the formation of hydroperoxy ketene 15 (DeltaH(a)(298) = 20.6 kcal/mol), and for the rearrangement to dioxetanone 9 (DeltaH(a)(298) = 23.6 kcal/mol). Compounds 19, 10, 15, and 9 rearrange or decompose with barriers between 13 and 16 kcal/mol to yield as major products formanhydride, glyoxal, formaldehyde, formic acid, and (to a minor extent) glyoxylic acid. Hence, the ozonolysis of acetylene possesses a very complicated reaction mechanism that deserves intensive experimental studies.

Publication Types