Display options
Share it on

J Exp Mar Biol Ecol. 2001 Mar 30;258(1):101-114. doi: 10.1016/s0022-0981(00)00348-8.

Small scale variability of benthic assemblages: biogenic neighborhood effects.

Journal of experimental marine biology and ecology

M Wahl

Affiliations

  1. Zoology Institute, University of Kiel, D-24098, Kiel, Germany

PMID: 11239628 DOI: 10.1016/s0022-0981(00)00348-8

Abstract

In this study, patterns of community development were investigated within vs. outside 'habitats'. These habitats represented five different monospecific assemblages of one of the following species: the brown alga Fucus serratus, the red alga Delesseria sanguinea, the green alga Enteromorpha intestinalis, the seagrass Zostera marina and the blue mussel Mytilus edulis. Natural assemblages were allowed to develop on paired artificial substrata-separated by ca. 1 m-within (treatment) vs. outside (control) of habitats. The same colonizer species settled on treatment and control substrata for given habitats. However, after 5 months of settlement and post-settlement dynamics, their proportional abundance and the structure of treatment and control assemblages differed in many instances. Variability among replicates of a given treatment, seperated by up to 50 m, was large, indicating a patchy spatial distribution of organisms. Despite this spatial heterogeneity among within-treatment replicates, analysis of similarity revealed that in most instances significantly different assemblages developed between treatments on a small spatial scale depending on whether substrata were positioned within as compared to outside a given habitat.Consequently, the algae, seagrass or mussels constituting a habitat seem to control the structure of the benthic assemblage developing in their vicinity by one or more possible mechanisms: reduction of larval advection, exudation of metabolites that influence settlement and/or post-settlement survival, and/or-in the case of mussel assemblages-predation on larvae.In addition to spatial variability in larval supply, stochasticity in succession, substratum heterogeneity, competition and predation effects, this investigation reveals the potential of a further assemblage structuring factor: the impact of neighboring organisms.

Publication Types