Display options
Share it on

Inorg Chem. 2001 Jun 18;40(13):2963-7. doi: 10.1021/ic000874m.

Metal- and ligand-centered monoelectronic oxidation of mu-nitrido[((tetraphenylporphyrinato)manganese)phthalocyaninatoiron)], [(TPP)Mn-N-FePc]. X-ray crystal structure of the Fe(IV)-containing species [(THF)(TPP)Mn-N-FePc(H(2)O)](I(5))02THF.

Inorganic chemistry

M P Donzello, C Ercolani, U Russo, A Chiesi-Villa, C Rizzoli

Affiliations

  1. Dipartimento di Chimica, Università degli Studi di Roma La Sapienza, I-00185 Rome, Italy.

PMID: 11399161 DOI: 10.1021/ic000874m

Abstract

The reaction of mu-nitrido[((tetraphenylporphyrinato)manganese)(phthalocyaninatoiron)], [(TPP)Mn-N-FePc], with I(2) in THF develops with the formation of two different species, i.e., [(THF)(TPP)Mn-N-FePc(H(2)O)](I(5)).2THF (I) and [(TPP)Mn(IV)-N-Fe(III)Pc](I(3)) (II). On the basis of single-crystal X-ray work and Mössbauer, EPR, Raman, and magnetic susceptibility data, I, found to be isostructural with the corresponding Fe-Fe complex, is shown to contain a low-spin triatomic Mn(IV)=N=Fe(IV) system (metal-centered oxidation). Data at hand for II (Mössbauer, EPR, Raman) show, instead, that oxidation takes place at one of the two macrocycles, very likely TPP (ligand-centered oxidation). The same cationic fragment present in I, and containing the Mn(IV)=N=Fe(IV) bond system, is also obtained when (TPP)Mn-N-FePc is allowed to react in THF with (phen)SbCl(6) (molar ratio 1:1). There are indications that the use of (phen)SbCl(6) in excess (2:1 molar ratio), in benzene, probably determines further oxidation with the formation of a species showing the combined presence of the Mn(IV)-Fe(IV) couple and of a pi-cation radical.

Publication Types