Display options
Share it on

J Org Chem. 1999 May 14;64(10):3608-3619. doi: 10.1021/jo982471y.

Aryliminopropadienone-C-Amidoketenimine- Amidinoketene-2-Aminoquinolone Cascades and the Ynamine-Isocyanate Reaction.

The Journal of organic chemistry

Curt Wentrup, V. V. Ramana Rao, Wilhelm Frank, Belinda E. Fulloon, Daniel W. J. Moloney, Thomas Mosandl

Affiliations

  1. Chemistry Department, The University of Queensland, Brisbane, Queensland 4072, Australia.

PMID: 11674488 DOI: 10.1021/jo982471y

Abstract

Imidoylketenes 11 and oxoketenimines 12 are generated by flash vacuum thermolysis of Meldrum's acid derivatives 9, pyrrolediones 17 and 18, and triazole 19 and are observed by IR spectroscopy. Ketenimine-3-carboxylic acid esters 12a are isolable at room temperature. Ketenes 11 and ketenimines 12 undergo rapid interconversion in the gas phase, and the ketenes cyclize to 4-quinolones 13. When using an amine leaving group in Meldrum's acid derivatives 9c, the major reaction products are aryliminopropadienones, ArN=C=C=C=O (15). The latter react with 1 equiv of nucleophile to produce ketenimines 12 and with 2 equiv to afford malonic acid imide derivatives 16. N-Arylketenimine-C-carboxamides 12c cyclize to quinolones 13c via the transient amidinoketenes 11c at temperatures of 25-40 degrees C. This implies rapid interconversion of ketenes and ketenimines by a 1,3-shift of the dimethylamino group, even at room temperature. This interconversion explains previously poorly understood outcomes of the ynamine-isocyanate reaction. The solvent dependence of the tautomerism of 4-quinolones/4-quinolinols is discussed. Rotational barriers of NMe(2) groups in amidoketenimines 12c and malonioc amides and amidines 16 (24) are reported.

Publication Types