Display options
Share it on

Endocr Pathol. 1998;9(3):261-274. doi: 10.1007/BF02739967.

Remodeling of Hyperplastic Pituitaries in Hypothyroid us-Subunit Knockout Mice After Thyroxine and 1713-Estradiol Treatment: Role of Apoptosis.

Endocrine pathology

Elzbieta Kulig, Sally A. Camper, Sara Kuecker, Long Jin, Ricardo V. Lloyd

Affiliations

  1. MD, PhD.

PMID: 12114718 DOI: 10.1007/BF02739967

Abstract

Hyperplasia of pituitary thyrotrophs is often associated with hypothyroidism. In this study. the effects of thyroxine and 1 7B-estradiol on thyrotroph hyperplasia was analyzed using a hypothyroid mouse model resulting from targeted disruption of the glycoprotein hormone a-subunit (aSU) gene, which leads to lack of functional thyroid-stimulating hormone (TSH), luteinizing hormone (LH), and follicle-stimulating hormone (FSH) and underdevelopment of the thyroid and gonads. Thyroxine replacement for 2 mo resulted in a decrease in the relative percent of thyrotrophs and an increase of lactotrophs and somatotrophs numbers to normal values. A twofold increase in the relative percent of gonadotrophs was observed compared to wild-type mouse pituitary. Treatment for 2 mo with 17B-estradiol led to an increase in lactotroph numbers to normal levels, but had no influence on thyrotroph hyperplasia. Rearrangement of the hyperplastic pituitary phenotype after hormonal replacement proceeded without any evidence of pituitary cell necrosis. A slight increase in apoptotic cell death was observed in hormone-treated pituitaries, and this was localized to TSH cells by double-labeling experiments. Chronic thyroxine treatment resulted in increased expression of Bcl-2 protein in hypertrophied pituitary cells, whereas 17f3-estradiol increased expression of Bad protein in prolactin cells. These results suggest that apoptotic cell death is involved in reversal of thyrotroph hyperplasia in the presence of thyroid hormone. Thyroxine and 17-estradiol may influence cell death in this model by regulating expression of the Bcl-2 protein family in a celltype specific manner.

References

  1. J Clin Invest. 1995 Dec;96(6):2828-38 - PubMed
  2. Neuroendocrinology. 1993 Jan;57(1):89-95 - PubMed
  3. Nature. 1990 Jul 19;346(6281):245-50 - PubMed
  4. Cancer Res. 1989 Mar 1;49(5):1247-53 - PubMed
  5. Endocrinology. 1997 Dec;138(12):5497-504 - PubMed
  6. Blood. 1996 Jul 15;88(2):386-401 - PubMed
  7. Semin Diagn Pathol. 1986 Feb;3(1):58-68 - PubMed
  8. Carcinogenesis. 1990 May;11(5):847-53 - PubMed
  9. Genes Dev. 1995 Aug 15;9(16):2007-19 - PubMed
  10. Endocrinology. 1998 Apr;139(4):2102-10 - PubMed
  11. Endocrinology. 1998 May;139(5):2465-71 - PubMed
  12. J Endocrinol. 1994 Oct;143(1):107-20 - PubMed
  13. Endocrinology. 1996 Jun;137(6):2490-502 - PubMed
  14. Pathol Res Pract. 1991 Jun;187(5):584-6 - PubMed
  15. Endocrinology. 1996 Jul;137(7):3051-60 - PubMed
  16. Cancer Res. 1995 Jun 15;55(12):2487-9 - PubMed
  17. Pathol Int. 1997 Nov;47(11):757-62 - PubMed
  18. Endocrinology. 1996 Feb;137(2):418-24 - PubMed
  19. J Endocrinol. 1986 Dec;111(3):367-73 - PubMed
  20. Horm Metab Res. 1995 Apr;27(4):201-3 - PubMed
  21. Br J Cancer. 1996 Dec;74(11):1743-8 - PubMed
  22. J Clin Endocrinol Metab. 1995 Nov;80(11):3127-30 - PubMed
  23. Endocrinology. 1998 Feb;139(2):748-52 - PubMed
  24. Liver. 1996 Apr;16(2):123-9 - PubMed
  25. Cell. 1997 Nov 14;91(4):443-6 - PubMed
  26. Endocrinology. 1995 Oct;136(10):4339-50 - PubMed
  27. J Reprod Fertil. 1980 Jul;59(2):267-72 - PubMed
  28. J Steroid Biochem Mol Biol. 1995 Jun;53(1-6):1-8 - PubMed
  29. Genes Dev. 1996 Jan 1;10(1):1-15 - PubMed
  30. J Clin Endocrinol Metab. 1997 Mar;82(3):963-8 - PubMed
  31. Endocrinology. 1996 Dec;137(12):5456-62 - PubMed
  32. Lab Invest. 1990 Oct;63(4):511-20 - PubMed
  33. Cancer Res. 1995 Dec 1;55(23):5595-602 - PubMed
  34. Exp Cell Res. 1997 Apr 10;232(1):17-24 - PubMed
  35. Pathol Res Pract. 1988 Sep;183(5):577-9 - PubMed
  36. Curr Opin Genet Dev. 1997 Oct;7(5):589-96 - PubMed
  37. Endocrinology. 1987 Jan;120(1):146-55 - PubMed

Publication Types