Display options
Share it on

Inorg Chem. 2002 Dec 02;41(24):6507-13. doi: 10.1021/ic025823z.

Synthesis, structure, and reactivity of some N-phosphorylphosphoranimines.

Inorganic chemistry

Jon J Longlet, Satish G Bodige, William H Watson, Robert H Neilson

Affiliations

  1. Department of Chemistry, Texas Christian University, Fort Worth, Texas 76129, USA.

PMID: 12444797 DOI: 10.1021/ic025823z

Abstract

A large series of new N-phosphorylphosphoranimines that bear potentially reactive functional groups on both phosphorus centers were prepared by silicon-nitrogen bond cleavage reactions of N-silylphosphoranimines. Thus, treatment of the N-silylphosphoranimines, Me(3)SiN=P(Me)(R)X (R = Me, Ph; X = OCH(2)CF(3) and R = Me, X = OPh), with phosphoryl chlorides, RP(=O)Cl(2) (R' = Cl, Me, Ph), readily afforded the corresponding N-phosphoryl derivatives, R'P(=O)(Cl)-N=P(Me)(R)X, in high yields. Subsequent reaction with 1 or 2 equiv of the silylamine, Me(3)SiNMe(2), resulted in ligand exchange at the phosphoryl (P=O) group to give the P-dimethylamino analogues, R'P(=O)(NMe(2))N=P(Me)(R)X (R' = Cl, NMe(2), Me, Ph; R = Me, Ph; X = OCH(2)CF(3), OPh). These new N-phosphorylphosphoranimines (and one thiophosphoryl analogue) were obtained as thermally stable, distillable liquids and were characterized by NMR ((1)H, (13)C, and (31)P) spectroscopy and elemental analysis. One member of the series, Cl(2)P(=O)N=P(Me)(Ph)OCH(2)CF(3) (4), was also studied by single-crystal X-ray diffraction which revealed that the formal P(O)-N single bond [1.55(1) A] is shorter than the formal N=PR(2)X double bond [1.60(1) A]. Such structural features are compared to those of similar compounds and discussed in relationship to the unexpected thermolysis pathways observed for these N-phosphorylphosphoranimines, none of which produced poly(phosphazenes).

Publication Types