Display options
Share it on

Plant Physiol. 1993 Mar;101(3):781-791. doi: 10.1104/pp.101.3.781.

Plastid Genes Encoding the Transcription/Translation Apparatus Are Differentially Transcribed Early in Barley (Hordeum vulgare) Chloroplast Development (Evidence for Selective Stabilization of psbA mRNA).

Plant physiology

B. J. Baumgartner, J. C. Rapp, J. E. Mullet

Affiliations

  1. Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843.

PMID: 12231729 PMCID: PMC158691 DOI: 10.1104/pp.101.3.781

Abstract

Chloroplast genomes encode rRNAs, tRNAs, and proteins involved in transcription, translation, and photosynthesis. The expression of 15 plastid genes representing each of these functions was quantitated during chloroplast development in barley (Hordeum vulgare). The transcription of all plastid genes increased during the initial phase of chloroplast development and then declined during chloroplast maturation. RNAs corresponding to rpoB- rpoC1-rpoC2, which encode subunits of a plastid RNA polymerase, and rps16, which encodes a ribosomal protein, reached maximal abundance early in chloroplast development prior to genes encoding subunits of the photosynthetic apparatus (rbcL, atpB, psaA, petB). Transcription of rpoB as well as 16S rRNA, trnfM-trnG, and trnK was high early in chloroplast development and declined 10-fold relative to rbcL transcription during chloroplast maturation. RNA hybridizing to psbA and psbD, genes encoding reaction center proteins of photosystem II, was differentially maintained in mature chloroplasts of illuminated barley. Differential accumulation of psbD mRNA relative to rbcL mRNA was due to light-stimulated transcription of psbD. In contrast, enhanced levels of psbA mRNA in mature chloroplasts were due primarily to selective stabilization of the psbA mRNA. These data document dynamic modulation of plastid gene transcription and mRNA stability during barley chloroplast development.

References

  1. EMBO J. 1991 Nov;10(11):3281-8 - PubMed
  2. Plant Mol Biol. 1991 Sep;17(3):541-5 - PubMed
  3. EMBO J. 1990 Dec;9(13):4485-94 - PubMed
  4. Curr Genet. 1989 Dec;16(5-6):433-45 - PubMed
  5. Plant Physiol. 1986 Jun;81(2):708-10 - PubMed
  6. Curr Genet. 1989 Jan;15(1):63-70 - PubMed
  7. Proc Natl Acad Sci U S A. 1989 Sep;86(17):6617-20 - PubMed
  8. Eur J Biochem. 1990 Dec 12;194(2):513-20 - PubMed
  9. Mol Gen Genet. 1989 Jun;217(2-3):185-94 - PubMed
  10. Nucleic Acids Res. 1987 Jul 10;15(13):5217-40 - PubMed
  11. EMBO J. 1988 May;7(5):1289-97 - PubMed
  12. Eur J Biochem. 1988 Nov 1;177(2):403-10 - PubMed
  13. EMBO J. 1990 Dec;9(12):3981-7 - PubMed
  14. Plant Cell. 1990 Jul;2(7):659-71 - PubMed
  15. Nucleic Acids Res. 1991 Jul 11;19(13):3577-81 - PubMed
  16. Cell. 1989 Jan 27;56(2):241-6 - PubMed
  17. Proc Natl Acad Sci U S A. 1989 Feb;86(3):876-80 - PubMed
  18. EMBO J. 1989 Oct;8(10):2785-94 - PubMed
  19. Mol Gen Genet. 1989 May;217(1):77-84 - PubMed
  20. Genetics. 1984 Apr;106(4):735-49 - PubMed
  21. Proc Natl Acad Sci U S A. 1990 Feb;87(4):1531-5 - PubMed
  22. Curr Genet. 1990 May;17(5):445-54 - PubMed
  23. J Biol Chem. 1988 Oct 5;263(28):14302-7 - PubMed
  24. Plant Mol Biol. 1991 Oct;17(4):813-23 - PubMed
  25. EMBO J. 1985 Jul;4(7):1661-6 - PubMed
  26. Nucleic Acids Res. 1985 Feb 25;13(4):1283-302 - PubMed
  27. J Mol Biol. 1988 Apr 20;200(4):639-54 - PubMed
  28. EMBO J. 1986 Sep;5(9):2043-2049 - PubMed
  29. J Biol Chem. 1985 Sep 15;260(20):11194-9 - PubMed
  30. Plant Physiol. 1975 Nov;56(5):660-4 - PubMed
  31. J Biol Chem. 1990 Feb 5;265(4):1895-902 - PubMed
  32. J Biol Chem. 1992 Oct 25;267(30):21404-11 - PubMed
  33. J Cell Biol. 1985 Feb;100(2):463-76 - PubMed
  34. Cell. 1987 May 8;49(3):379-87 - PubMed
  35. EMBO J. 1988 Nov;7(11):3301-8 - PubMed
  36. EMBO J. 1984 Aug;3(8):1697-704 - PubMed
  37. Trends Biochem Sci. 1988 Jan;13(1):19-22 - PubMed
  38. Nucleic Acids Res. 1988 Jul 11;16(13):5741-54 - PubMed

Publication Types