Display options
Share it on

Anal Chem. 2003 Nov 15;75(22):6097-104. doi: 10.1021/ac034452g.

Chiral separations using polymeric surfactants and polyelectrolyte multilayers in open-tubular capillary electrochromatography.

Analytical chemistry

Constantina P Kapnissi, Bertha C Valle, Isiah M Warner

Affiliations

  1. Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, USA.

PMID: 14615987 DOI: 10.1021/ac034452g

Abstract

In this study, fused-silica capillaries are modified using a polyelectrolyte multilayer (PEM) coating procedure in open-tubular capillary electrochromatography. The PEM coating was constructed in situ with alternating rinses of positively and negatively charged polymers. The quaternary ammonium salt poly (diallyldimethylammonium chloride) was used as the cationic polymer, and the polymeric surfactant poly (sodium N-undecanoyl-l-leucylvalinate) was used as the anionic polymer. Previous studies have shown that the PEM-coated capillaries used for achiral separations have excellent reproducibilities and high stabilities against extreme pH values. In the current study, this PEM coating approach was applied to chiral separations of 1,1'-binaphthyl-2,2'-dihydrogenphosphate (BNP), 1,1'-bi-2-naphthol, secobarbital, pentobarbital, and temazepam. However, the PEM coating procedure used in the achiral studies needed to be significantly modified in order to achieve chiral separations. Optimal conditions were established by varying the additives (sodium chloride, 1-ethyl-3-methyl-1H-imidazolium hexafluorophosphate, 1-butyl-3-methylimidazolium tetrafluoroborate) in the polymer deposition solutions, the salt concentration, the column temperature, and the bilayer number. Reproducibilities were evaluated by use of the relative standard deviation (RSD) values of the electroosmotic flow (EOF) and the first peak ((R)-(+)-BNP). In all cases, the run-to-run and capillary-to-capillary RSD values of EOF were less than 0.5%, and the run-to-run RSD values of the (R)-(+)-BNP peak were less than 1%. In addition, more than 230 runs were performed on a single PEM-coated capillary.

Publication Types