Display options
Share it on

J Mass Spectrom. 2004 Jun;39(6):647-54. doi: 10.1002/jms.632.

Site of alkylation of N-methyl- and N-ethylaniline in the gas phase: a tandem mass spectrometric study.

Journal of mass spectrometry : JMS

Suzanne Ackloo, Alex G Harrison, Johan K Terlouw

Affiliations

  1. Department of Chemistry, McMaster University, 1280 Main St. West, Hamilton, Ontario L8S 4M1, Canada. [email protected]

PMID: 15236303 DOI: 10.1002/jms.632

Abstract

N-Methylaniline (NMA) was ethylated and N-ethylaniline (NEA) was methylated under chemical ionization conditions using C(2)H(5)I and CH(3)I, respectively, as reagent gases. The structures of the resulting m/z 136 adduct ions have been probed using metastable ion and collision-induced dissociation (CID) methods. From the similarity of the spectra obtained and from the presence of structure-diagnostic ions at m/z 59 (CH(3)NHC(2)H(5) (+*)) and m/z 44 (CH(3)NHCH(2) (+)), it is concluded that predominantly N-alkylation occurs in both systems. This interpretation was aided by the use of C(2)D(5)I and CD(3)I as reagents. Adduct ions of m/z 136 were also formed by ethylation of the isomeric toluidines and by methylation of the ring-ethylanilines. The resulting CID mass spectra were distinctly different from those obtained for the m/z 136 ions obtained by alkylation of NMA and NEA. Protonation of N-ethyl-N-methylaniline using CH(3)C(==O)CH(3) as Brønsted acid reagent produced an m/z 136 species whose CID mass spectrum also featured intense ion signals at m/z 59 and 44. This observation led to the conclusion that protonation with acetone as reagent results, in this case, in dominant N-protonation. However, the CID mass spectrum of the m/z 136 ion formed when CH(3)OH was the protonating agent featured a weak signal at m/z 44 and no signal at m/z 59. Hence it was concluded that the latter m/z 136 ion contains a larger contribution from the ring-protonated adduct.

Copyright 2004 John Wiley & Sons, Ltd.

Publication Types