Display options
Share it on

J Mater Sci Mater Med. 1999 Jun;10(6):353-62. doi: 10.1023/a:1026473723777.

Quantitative analysis of the wear and wear debris from low and high carbon content cobalt chrome alloys used in metal on metal total hip replacements.

Journal of materials science. Materials in medicine

J L Tipper, P J Firkins, E Ingham, J Fisher, M H Stone, R Farrar

Affiliations

  1. Department of Microbiology, University of Leeds, Leeds, LS2 9JT, UK.

PMID: 15348136 DOI: 10.1023/a:1026473723777

Abstract

The biological reactions to polyethylene wear debris have been shown to result in osteolysis and loosening of total hip arthroplasties. This has led to renewed interest in the use of metal on metal bearings in hip prostheses. This study employed uniaxial and biaxial multistation pin on plate reciprocators to assess how the carbon content of the cobalt chrome alloy and the types of motion affected the wear performance of the bearing surfaces and the morphology of the wear debris generated. The low carbon specimens demonstrated higher wear factors than both the mixed carbon pairings and the high carbon pairings. The biaxial motion decreased the wear rates of all specimens. Plate wear was significantly reduced by the biaxial motion, compared to pin wear. The metal wear particles isolated were an order of magnitude smaller than polyethylene particles, at 60-90 nm, and consequently, 100-fold more particles were produced per unit volume of wear compared to polyethylene. The low carbon specimens produced significantly larger particles than the other material combinations, although it is thought unlikely that the difference would be biologically significant in vivo. The volumetric wear rates were affected by the carbon content of the cobalt chrome alloy, the material combination used and type of motion applied. However, particle morphology was not affected by the carbon content of the alloy or the type of motion applied.

Copyright 1999 Kluwer Academic Publishers

References

  1. J Bone Joint Surg Am. 1992 Jul;74(6):849-63 - PubMed
  2. J Bone Joint Surg Am. 1993 Jun;75(6):825-34 - PubMed
  3. J Orthop Res. 1994 Sep;12(5):720-31 - PubMed
  4. J Arthroplasty. 1990 Dec;5(4):337-48 - PubMed
  5. J Bone Joint Surg Br. 1990 Nov;72 (6):966-70 - PubMed
  6. J Bone Joint Surg Br. 1975 Aug;57(3):289-96 - PubMed
  7. Clin Orthop Relat Res. 1996 Aug;(329 Suppl):S148-59 - PubMed
  8. J Bone Joint Surg Br. 1990 Nov;72(6):988-92 - PubMed
  9. Clin Orthop Relat Res. 1973 Sep;(95):174-92 - PubMed
  10. Clin Orthop Relat Res. 1996 Aug;(329 Suppl):S187-205 - PubMed
  11. Clin Orthop Relat Res. 1992 Mar;(276):7-18 - PubMed
  12. Proc Inst Mech Eng H. 1997;211(3):247-56 - PubMed
  13. J Bone Joint Surg Am. 1989 Oct;71(9):1337-42 - PubMed
  14. J Bone Joint Surg Br. 1992 Jan;74(1):57-62 - PubMed
  15. Clin Orthop Relat Res. 1995 Feb;(311):54-9 - PubMed
  16. J Biomed Mater Res. 1974;8(3):11-26 - PubMed
  17. Clin Orthop Relat Res. 1996 Aug;(329 Suppl):S35-47 - PubMed
  18. Clin Orthop Relat Res. 1973 Sep;(95):217-23 - PubMed
  19. Clin Mater. 1994;15(2):101-47 - PubMed
  20. Clin Orthop Relat Res. 1992 Jan;(274):60-78 - PubMed
  21. J Bone Joint Surg Am. 1988 Mar;70(3):347-56 - PubMed
  22. Clin Orthop Relat Res. 1996 Aug;(329 Suppl):S206-16 - PubMed
  23. Clin Orthop Relat Res. 1973 Sep;(95):127-42 - PubMed
  24. J Biomed Mater Res. 1977 Mar;11(2):157-64 - PubMed
  25. Clin Orthop Relat Res. 1988 Jul;(232):244-54 - PubMed
  26. Proc Inst Mech Eng H. 1991;205(2):73-9 - PubMed
  27. Clin Orthop Relat Res. 1993 Aug;(293):160-73 - PubMed
  28. J Bone Joint Surg Br. 1992 May;74(3):380-4 - PubMed
  29. Proc Inst Mech Eng H. 1996;210(3):223-32 - PubMed
  30. Clin Orthop Relat Res. 1996 Aug;(329 Suppl):S297-303 - PubMed
  31. J Bone Joint Surg Am. 1993 Jun;75(6):835-44 - PubMed
  32. Clin Orthop Relat Res. 1982 Oct;(170):175-83 - PubMed
  33. J Arthroplasty. 1992 Sep;7(3):315-23 - PubMed
  34. J Bone Joint Surg Br. 1998 Mar;80(2):340-4 - PubMed

Publication Types