Display options
Share it on

Langmuir. 2005 Mar 29;21(7):2876-80. doi: 10.1021/la047861w.

Templated surfactant readsorption on polyelectrolyte-induced depleted surfactant surfaces.

Langmuir : the ACS journal of surfaces and colloids

Jason S Poirier, Carl P Tripp, David J Neivandt

Affiliations

  1. Department of Chemical and Biological Engineering, Laboratory for Surface Science and Technology, University of Maine, Orono, Maine 04469, USA.

PMID: 15779961 DOI: 10.1021/la047861w

Abstract

Changes in the structure of a surfactant adsorbed on oxidized silicon arising from interaction with a polyelectrolyte have been studied using polarized infrared attenuated total reflection spectroscopy. Specifically, the cationic surfactant cetyltrimethylammonium bromide (CTAB) was found to form a highly ordered layer on oxidized silicon at a concentration of 5.5 x 10(-5) M and a pH of 9.6. Addition of a solution of the anionic polyelectrolyte poly(styrenesulfonate) to the ordered CTAB layer resulted in a rapid and dramatic decrease in the surface excess of CTAB. Interestingly however, the interfacial order of the residual surfactant was retained for a time period greater than 1 h, before decreasing. Reintroduction of a surfactant solution prior to destabilization of the residual interfacial CTAB resulted in the readsorption of the surfactant, the recovery of the initial equilibrium coverage, and the maintenance of an ordered CTAB conformation. This desorption/readsorption process may be subsequently repeated without destroying the order of the CTAB on the surface. If however sufficient time is allowed for the residual interfacial surfactant to destabilize prior to readdition of CTAB, the degree of surfactant order remains low, despite the rapid reobtainment of a surface excess equal to or greater than that initially measured. These results are interpreted in terms of polymer/surfactant interfacial complexation and the removal of adsorbed surfactant into solution. The ordering behavior of the residual surfactant suggests that CTAB is left on the surface in isolated patches of highly ordered species that maintain their order until two-dimensional diffusion leads to a more homogeneous surfactant surface distribution and hence the loss of conformational order. The degree of orientation order assumed by surfactant readsorbing on a depleted surface appears to be templated by the order of the residual interfacial surfactant, suggestive of a two-dimensional epitaxial growth mechanism for CTAB readsorption.

Publication Types