Display options
Share it on

Photosynth Res. 2001;67(3):185-97. doi: 10.1023/A:1010681511105.

Non-photochemical chlorophyll fluorescence quenching and structural rearrangements induced by low pH in intact cells of Chlorella fusca (Chlorophyceae) and Mantoniella squamata (Prasinophyceae).

Photosynthesis research

R Goss, G Garab

Affiliations

  1. Institut für Botanik, Universität Leipzig, Johannisallee 21-23, D-04103, Leipzig, Germany.

PMID: 16228306 DOI: 10.1023/A:1010681511105

Abstract

We have used circular dichroism (CD) spectroscopy and chlorophyll fluorescence induction measurements in order to examine low-pH-induced changes in the chiral macro-organization of the chromophores and in the efficiency of non-photochemical quenching of the chlorophyll a fluorescence (NPQ) in intact, dark-adapted cells of Chlorella fusca (Chlorophyceae) and Mantoniella squamata (Prasinophyceae). We found that: (i) high proton concentrations enhanced the formation of chiral macrodomains of the complexes, i.e. the formation of large aggregates with long-range chiral order of pigment dipoles; this was largely independent of the low-pH-induced accumulation of de-epoxidized xanthophylls; (ii) lowering the pH led to NPQ; however, efficient energy dissipation, in the absence of excess light, could only be achieved if a substantial part of violaxanthin was converted to zeaxanthin and antheraxanthin in Chlorella and Mantoniella, respectively; (iii) the low-pH-induced changes in the chiral macro-organization of pigments were fully reversed by titrating the cells to neutral pH; (iv) at neutral pH, the presence of antheraxanthin or zeaxanthin did not bring about a sizeable NPQ. Hence, low-pH-induced NPQ in dark adapted algal cells appears to be associated both with the presence of de-epoxidized xanthophylls and structural changes in the chiral macrodomains. It is proposed that the macrodomains, by providing a suitable structure for long-distance migration of the excitation energy, in the presence of quenchers associated with de-epoxidized xanthophylls, facilitate significantly the dissipation of unused excitation energy.

References

  1. Photosynth Res. 1994 Sep;41(3):389-95 - PubMed
  2. Biochim Biophys Acta. 2000 Apr 21;1457(3):190-9 - PubMed
  3. Photosynth Res. 1994 Nov;42(2):89-109 - PubMed
  4. J Cell Biol. 1983 Nov;97(5 Pt 1):1327-37 - PubMed
  5. Plant Physiol. 1990 Feb;92(2):293-301 - PubMed
  6. Planta. 1967 Jun;74(2):148-72 - PubMed
  7. Photosynth Res. 1991 Jan;27(1):57-64 - PubMed
  8. Proc Natl Acad Sci U S A. 1999 Apr 27;96(9):4914-7 - PubMed
  9. Photosynth Res. 1992 Jan;31(1):11-9 - PubMed
  10. Annu Rev Plant Physiol Plant Mol Biol. 1996 Jun;47:655-684 - PubMed
  11. Biochemistry. 1999 Sep 28;38(39):12718-26 - PubMed
  12. Proc Natl Acad Sci U S A. 1999 Jul 6;96(14):8277-82 - PubMed
  13. Proc Natl Acad Sci U S A. 1989 Nov;86(22):8748-52 - PubMed
  14. Biochemistry. 1988 Aug 9;27(16):5839-43 - PubMed
  15. Biochemistry. 1996 Jul 9;35(27):8981-5 - PubMed
  16. Anal Biochem. 1997 Aug 1;250(2):169-75 - PubMed
  17. Biochemistry. 1996 Jan 23;35(3):674-8 - PubMed
  18. Biochemistry. 1997 Jun 24;36(25):7855-9 - PubMed
  19. Planta. 1969 Sep;89(3):224-43 - PubMed
  20. Proc Natl Acad Sci U S A. 1992 Mar 1;89(5):1899-903 - PubMed
  21. Photosynth Res. 1993 Jan;35(1):67-78 - PubMed
  22. Photosynth Res. 1993 Aug;37(2):117-30 - PubMed
  23. Proc Natl Acad Sci U S A. 1995 Mar 14;92(6):2273-7 - PubMed
  24. Nature. 2000 Jan 27;403(6768):391-5 - PubMed
  25. Biochemistry. 1994 Sep 6;33(35):10837-41 - PubMed
  26. Biochim Biophys Acta. 1999 Jun 30;1412(2):173-83 - PubMed
  27. Proc Natl Acad Sci U S A. 1996 Feb 20;93(4):1492-7 - PubMed
  28. FEBS Lett. 1991 Nov 4;292(1-2):1-4 - PubMed
  29. Biochim Biophys Acta. 1977 Dec 23;462(3):642-58 - PubMed
  30. Biochim Biophys Acta. 1985 Mar 13;806(3):374-88 - PubMed

Publication Types