Display options
Share it on

Anal Chem. 2005 Nov 15;77(22):7310-8. doi: 10.1021/ac051029u.

Electrochemically modulated liquid-liquid extraction of ions.

Analytical chemistry

Alfonso Berduque, Amanda Sherburn, Mihaela Ghita, Robert A W Dryfe, Damien W M Arrigan

Affiliations

  1. Tyndall National Institute, Lee Maltings, University College, Cork, Ireland.

PMID: 16285680 DOI: 10.1021/ac051029u

Abstract

The development of ion extraction methods under electrochemical control via electrochemistry at the interface between two immiscible electrolyte solutions is discussed. A hydrodynamic flow injection system was used for the potentiostatic extraction of non-redox-active species from a flowing aqueous phase into a stationary organogel phase. The ions tetraethylammonium, 4-octylbenzenesulfonate (4-OBSA-), and p-toluenesulfonate (p-TSA-) were studied as model analytes. The extraction study comprised examination of the influence of extraction potentials, aqueous-phase flow rate, and target species concentration. The extraction process can be monitored in situ by means of the ion-transfer current, which has opposing signs for anions and cations. Hydrodynamic voltammograms were obtained from these experiments. The selective extraction of 4-OBSA-, from its mixture with p-TSA-, as well as coextraction of both anions is shown. The results demonstrate the utility of electrochemical modulation for the controlled extraction of ions from an aqueous phase into an organogel electrolyte phase. This offers potential benefits for various analytical processes including sample preparation and cleanup.

Publication Types