Display options
Share it on

Appl Environ Microbiol. 1995 May;61(5):1881-7. doi: 10.1128/aem.61.5.1881-1887.1995.

Manganese regulation of veratryl alcohol in white rot fungi and its indirect effect on lignin peroxidase.

Applied and environmental microbiology

T Mester, E de Jong, J A Field

PMID: 16535027 PMCID: PMC1388445 DOI: 10.1128/aem.61.5.1881-1887.1995

Abstract

Many white rot fungi are able to produce de novo veratryl alcohol, which is known to be a cofactor involved in the degradation of lignin, lignin model compounds, and xenobiotic pollutants by lignin peroxidase (LiP). In this study, Mn nutrition was shown to strongly influence the endogenous veratryl alcohol levels in the culture fluids of N-deregulated and N-regulated white rot fungi Bjerkandera sp. strain BOS55 and Phanerochaete chrysosporium BKM-F-1767, respectively. Endogenous veratryl alcohol levels as high as 0.75 mM in Bjerkandera sp. strain BOS55 and 2.5 mM in P. chrysosporium were observed under Mn-deficient conditions. In contrast, veratryl alcohol production was dramatically decreased in cultures supplemented with 33 or 264 (mu)M Mn. The LiP titers, which were highest in Mn-deficient media, were shown to parallel the endogenous veratryl alcohol levels, indicating that these two parameters are related. When exogenous veratryl alcohol was added to Mn-sufficient media, high LiP titers were obtained. Consequently, we concluded that Mn does not regulate LiP expression directly. Instead, LiP titers are enhanced by the increased production of veratryl alcohol. The well-known role of veratryl alcohol in protecting LiP from inactivation by physiological levels of H(inf2)O(inf2) is postulated to be the major reason why LiP is apparently regulated by Mn. Provided that Mn was absent, LiP titers in Bjerkandera sp. strain BOS55 increased with enhanced fungal growth obtained by increasing the nutrient N concentration while veratryl alcohol levels were similar in both N-limited and N-sufficient conditions.

References

  1. Appl Microbiol Biotechnol. 1990 Jan;32(4):436-42 - PubMed
  2. Proc Natl Acad Sci U S A. 1992 Jun 15;89(12):5586-90 - PubMed
  3. Appl Environ Microbiol. 1991 Aug;57(8):2368-75 - PubMed
  4. Biochem Biophys Res Commun. 1991 Aug 15;178(3):1056-63 - PubMed
  5. J Bacteriol. 1991 Jul;173(13):4101-6 - PubMed
  6. Biochemistry. 1990 Sep 18;29(37):8535-9 - PubMed
  7. J Bacteriol. 1990 Jun;172(6):3125-30 - PubMed
  8. Annu Rev Microbiol. 1987;41:465-505 - PubMed
  9. J Biol Chem. 1986 May 25;261(15):6900-3 - PubMed
  10. Arch Biochem Biophys. 1986 Dec;251(2):688-96 - PubMed
  11. Appl Environ Microbiol. 1993 Sep;59(9):2897-903 - PubMed
  12. Biochemistry. 1994 Apr 12;33(14):4225-30 - PubMed
  13. Appl Environ Microbiol. 1994 Sep;60(9):3447-9 - PubMed
  14. Appl Environ Microbiol. 1993 Sep;59(9):2909-13 - PubMed
  15. Microbiol Rev. 1993 Sep;57(3):605-22 - PubMed
  16. Appl Biochem Biotechnol. 1993 Spring;39-40:227-38 - PubMed
  17. Arch Microbiol. 1993;160(1):1-4 - PubMed
  18. J Biol Chem. 1993 Sep 25;268(27):20064-70 - PubMed
  19. Appl Environ Microbiol. 1981 Aug;42(2):290-6 - PubMed
  20. Appl Environ Microbiol. 1986 Aug;52(2):251-4 - PubMed
  21. Appl Environ Microbiol. 1988 Feb;54(2):466-72 - PubMed
  22. Appl Environ Microbiol. 1990 Jan;56(1):210-7 - PubMed
  23. Appl Environ Microbiol. 1990 Jun;56(6):1806-12 - PubMed
  24. Appl Environ Microbiol. 1993 Dec;59(12):4010-6 - PubMed
  25. Appl Environ Microbiol. 1993 Dec;59(12):4031-6 - PubMed
  26. Appl Environ Microbiol. 1994 Jan;60(1):271-7 - PubMed
  27. Appl Environ Microbiol. 1994 Feb;60(2):569-75 - PubMed
  28. Appl Environ Microbiol. 1994 Feb;60(2):709-14 - PubMed
  29. FEBS Lett. 1992 Mar 24;299(1):107-10 - PubMed
  30. Appl Environ Microbiol. 1992 Aug;58(8):2402-9 - PubMed

Publication Types