Display options
Share it on

Plant Physiol. 1982 Nov;70(5):1321-6. doi: 10.1104/pp.70.5.1321.

Characterization of a Manganese Superoxide Dismutase from the Higher Plant Pisum sativum.

Plant physiology

F Sevilla, J López-Gorgé, L A Del Río

Affiliations

  1. Unidad de Bioquímica Vegetal, Estación Experimental del Zaidín, C. S. I. C., Profesor Albareda 1, Granada, Spain.

PMID: 16662674 PMCID: PMC1065882 DOI: 10.1104/pp.70.5.1321

Abstract

A manganese-containing superoxide dismutase (EC 1.15.1.1) was fully characterized from leaves of the higher plant Pisum sativum L., var. Lincoln. The amino acid composition determined for the enzyme was compared with that of a wide spectrum of superoxide dismutases and found to have a highest degree of homology with the mitochondrial manganese superoxide dismutases from rat liver and yeast. The enzyme showed an apparent pH optimum of 8.6 and at 25 degrees C had a maximum stability at alkaline pH values. By kinetic competition experiments, the rate constant for the disproportionation of superoxide radicals by pea leaf manganese superoxide dismutase was found to be 1.61 x 10(9) molar(-1).second(-1) at pH 7.8 and 25 degrees C. The enzyme was not sensitive to NaCN or to H(2)O(2), but was inhibited by N(3) (-). The sulfhydryl reagent p-hydroxymercuribenzoate at 1 mm concentration produced a nearly complete inhibition of the manganese superoxide dismutase activity. The metal chelators o-phenanthroline, EDTA, and diethyldithiocarbamate all inhibited activity slightly in decreasing order of intensity. A comparative study between this higher plant manganese superoxide dismutase and other dismutases from different origins is presented.

References

  1. Plant Physiol. 1982 Jan;69(1):161-5 - PubMed
  2. Arch Biochem Biophys. 1981 Feb;206(2):249-64 - PubMed
  3. Eur J Biochem. 1977 Mar 1;73(2):373-81 - PubMed
  4. Biochim Biophys Acta. 1973 Jul 12;317(1):50-64 - PubMed
  5. Science. 1978 Sep 8;201(4359):875-80 - PubMed
  6. J Biol Chem. 1977 Sep 25;252(18):6421-3 - PubMed
  7. J Biol Chem. 1951 Nov;193(1):265-75 - PubMed
  8. Biochimie. 1975;57(3):375-81 - PubMed
  9. Biochem Biophys Res Commun. 1974 May 7;58(1):35-41 - PubMed
  10. J Biol Chem. 1969 Nov 25;244(22):6049-55 - PubMed
  11. Arch Biochem Biophys. 1973 Sep;158(1):396-400 - PubMed
  12. J Biol Chem. 1975 Aug 10;250(15):6107-12 - PubMed
  13. Biochem J. 1977 Jan 1;161(1):3-11 - PubMed
  14. J Biol Chem. 1972 Aug 10;247(15):4839-42 - PubMed
  15. Int J Biochem. 1978;9(5):299-306 - PubMed
  16. J Biol Chem. 1973 Jul 25;248(14):4905-8 - PubMed
  17. Anal Biochem. 1971 Nov;44(1):276-87 - PubMed
  18. Arch Biochem Biophys. 1979 Jul;195(2):535-45 - PubMed
  19. Eur J Biochem. 1980 May;106(1):297-303 - PubMed
  20. J Biochem. 1978 Apr;83(4):1165-71 - PubMed
  21. Biochim Biophys Acta. 1976 Jul 8;438(2):380-92 - PubMed
  22. J Biol Chem. 1975 Apr 25;250(8):2801-7 - PubMed
  23. Biochem J. 1977 Jul 1;165(1):81-7 - PubMed
  24. Eur J Biochem. 1973 Jul 2;36(1):257-66 - PubMed
  25. Osaka City Med J. 1975;21(2):127-36 - PubMed
  26. J Biol Chem. 1978 Dec 25;253(24):8708-20 - PubMed
  27. Biochemistry. 1967 Jul;6(7):1948-54 - PubMed
  28. Arch Biochem Biophys. 1978 Apr 15;187(1):223-8 - PubMed
  29. Biochim Biophys Acta. 1972 May 12;268(2):305-12 - PubMed
  30. Arch Biochem Biophys. 1978 Jan 30;185(2):473-82 - PubMed
  31. Arch Biochem Biophys. 1980 May;201(2):369-74 - PubMed

Publication Types