Display options
Share it on

Plant Physiol. 1983 Jun;72(2):557-63. doi: 10.1104/pp.72.2.557.

Host-Pathogen Interactions : XXIII. The Mechanism of the Antibacterial Action of Glycinol, a Pterocarpan Phytoalexin Synthesized by Soybeans.

Plant physiology

L I Weinstein, P Albersheim

Affiliations

  1. Department of Chemistry, University of Colorado, Boulder, Colorado 80309.

PMID: 16663042 PMCID: PMC1066273 DOI: 10.1104/pp.72.2.557

Abstract

The biochemical basis for the ability of the pterocarpan phytoalexin glycinol (3,6a,9-trihydroxypterocarpan) to inhibit the growth of bacteria was examined. Glycinol at bacteriostatic concentrations (e.g. 50 micrograms per milliliter) inhibits the ability of Erwinia carotovora to incorporate [(3)H]leucine, [(3)H]thymidine, or [(3)H]uridine into biopolymers. Exposure of Escherichia coli membrane vesicles to glycinol at 20 micrograms per milliliter results in inhibition of respiration-linked transport of [(14)C]lactose and [(14)C]glycine into the vesicles when either d-lactate or succinate is supplied as the energy source. The ability of E. coli membrane vesicles to transport [(14)C]alpha-methyl glucoside, a vectorial phosphorylation-mediated process, is also inhibited by glycinol at 20 micrograms per milliliter. Furthermore, exposure of membrane vesicles to glycinol (50 micrograms per milliliter) at 20 degrees C results in the leakage of accumulated [(14)C]alpha-methyl glucoside-6-phosphate. The effects of the phytoalexins glyceollin, capsidiol, and coumestrol, and daidzein, a compound structurally related to glycinol but without antibiotic activity, upon the E. coli membrane vesicle respiration-linked transport of [(14)C]glycine and of [(14)C]alpha-methyl glucoside was also examined. Glyceollin and coumestrol (50 micrograms per milliliter), but not daidzein, inhibit both membrane-associated transport processes. These data imply that the antimicrobial activity of glycinol, glyceollin, and coumestrol are due to a general interaction with the bacterial membrane. Capsidiol (50 micrograms per milliliter) inhibits d-lactate-dependent transport of [(14)C]glycine but not vectorial phosphorylation-mediated transport of [(14)C]alpha-methyl glucoside. Thus, capsidiol's mechanism of antimicrobial action seems to differ from that of the other phytoalexins examined.

References

  1. J Biol Chem. 1968 Apr 10;243(7):1390-400 - PubMed
  2. J Biol Chem. 1972 Jan 10;247(1):291-7 - PubMed
  3. J Biol Chem. 1971 Oct 10;246(19):5857-61 - PubMed
  4. Bacteriol Rev. 1961 Mar;25(1):32-48 - PubMed
  5. Annu Rev Biochem. 1970;39:561-98 - PubMed
  6. J Biol Chem. 1971 Sep 10;246(17):5523-31 - PubMed
  7. Am J Med Sci. 1968 Oct;256(4):255-65 - PubMed
  8. J Cell Biol. 1978 Sep;78(3):627-43 - PubMed
  9. Annu Rev Biochem. 1977;46:723-63 - PubMed
  10. Methods Enzymol. 1974;31:698-709 - PubMed
  11. Ann Inst Pasteur (Paris). 1956 Nov;91(5):693-720 - PubMed
  12. Plant Physiol. 1976 May;57(5):751-9 - PubMed
  13. Plant Physiol. 1981 Aug;68(2):358-63 - PubMed
  14. Proc Natl Acad Sci U S A. 1978 Jul;75(7):3148-52 - PubMed
  15. Plant Physiol. 1981 Jan;67(1):5-8 - PubMed
  16. Proc Natl Acad Sci U S A. 1970 Jul;66(3):1008-15 - PubMed
  17. Anal Biochem. 1976 May 7;72:248-54 - PubMed
  18. Proc Natl Acad Sci U S A. 1970 Mar;65(3):683-90 - PubMed
  19. Proc Natl Acad Sci U S A. 1969 Jul;63(3):724-31 - PubMed
  20. Cancer Res. 1963 Sep;23:1428-41 - PubMed
  21. Proc Natl Acad Sci U S A. 1970 Aug;66(4):1190-8 - PubMed
  22. J Biol Chem. 1972 Dec 25;247(24):7844-57 - PubMed
  23. J Biol Chem. 1968 Jul 10;243(13):3711-24 - PubMed

Publication Types