Display options
Share it on

Plant Physiol. 1991 Jan;95(1):157-63. doi: 10.1104/pp.95.1.157.

Effects of Polyamines on the Oxidation of Exogenous NADH by Jerusalem Artichoke (Helianthus tuberosus) Mitochondria.

Plant physiology

M Rugolo, F Antognoni, A Flamigni, D Zannoni

Affiliations

  1. Department of Biology, Biochemistry Laboratory, University of Bologna, I-40126 Bologna, Italy.

PMID: 16667944 PMCID: PMC1077499 DOI: 10.1104/pp.95.1.157

Abstract

The effect of polyamines (putrescine, spermine, and spermidine) on the oxidation of exogenous NADH by Jerusalem artichoke (Helianthus tuberosus L. cv. OB1) mitochondria, have been studied. Addition of spermine and/or spermidine to a suspension of mitochondria in a low-cation medium (2 millimolar-K(+)) caused a decrease in the apparent K(m) and an increase in the apparent V(max) for the oxidation of exogenous NADH. These polycations released by screening effect the mitochondrially induced quenching of 9-aminoacridine fluorescence, their efficiency being dependent on the valency of the cation (C(4+) > C(3+)). Conversely, putrescine only slightly affected both kinetic parameters of exogenous NADH oxidation and the number of fixed charges on the membranes. Spermine and spermidine, but not putrescine, decreased the apparent K(m) for Ca(2+) from about 1 to about 0.2 micromolar, required to activate external NADH oxidation in a high-cation medium, containing physiological concentrations of Pi, Mg(2+) and K(+). The results are interpreted as evidence for a role of spermine and spermidine in the modulation of exogenous NADH oxidation by plant mitochondria in vivo.

References

  1. Biochemistry. 1986 Jun 3;25(11):3109-18 - PubMed
  2. Biochem J. 1988 Nov 1;255(3):1015-21 - PubMed
  3. Eur J Biochem. 1982 Mar;123(1):81-8 - PubMed
  4. J Biol Chem. 1988 Dec 25;263(36):19407-11 - PubMed
  5. J Biol Chem. 1984 Nov 10;259(21):12978-83 - PubMed
  6. Biophys J. 1977 Nov;20(2):193-219 - PubMed
  7. Biochim Biophys Acta. 1972 Aug 17;275(2):148-60 - PubMed
  8. Biochem J. 1981 Feb 15;194(2):487-95 - PubMed
  9. Biochem J. 1981 Jan 1;193(1):37-46 - PubMed
  10. Biochim Biophys Acta. 1986 Sep 25;861(1):177-86 - PubMed
  11. Am J Physiol. 1982 May;242(5):C404-8 - PubMed
  12. Biochim Biophys Acta. 1990 Mar 15;1016(1):77-86 - PubMed
  13. Biochem Biophys Res Commun. 1985 Dec 17;133(2):563-73 - PubMed
  14. Biochim Biophys Acta. 1973 Jan 18;292(1):105-16 - PubMed
  15. J Biol Chem. 1951 Nov;193(1):265-75 - PubMed
  16. Biochim Biophys Acta. 1980 Feb 8;589(2):346-52 - PubMed
  17. Biochim Biophys Acta. 1977 Sep 14;461(3):413-25 - PubMed
  18. Biochem J. 1988 Nov 15;256(1):125-30 - PubMed
  19. Biochem J. 1989 May 15;260(1):1-10 - PubMed
  20. Plant Physiol. 1990 Mar;92(3):690-5 - PubMed
  21. J Bioenerg Biomembr. 1977 Feb;9(1):65-72 - PubMed
  22. Biochim Biophys Acta. 1959 Dec;36:529-31 - PubMed
  23. FEBS Lett. 1979 Dec 1;108(1):28-32 - PubMed
  24. Biochem J. 1981 Jun 1;195(3):583-8 - PubMed
  25. Biochem Biophys Res Commun. 1982 Nov 30;109(2):513-7 - PubMed

Publication Types