Display options
Share it on

J Phys Chem B. 2006 Apr 20;110(15):7967-74. doi: 10.1021/jp0557767.

Improved hydrogen release from LiB0.33N0.67H2.67 with noble metal additions.

The journal of physical chemistry. B

Frederick E Pinkerton, Martin S Meyer, Gregory P Meisner, Michael P Balogh

Affiliations

  1. Materials and Processes Laboratory, General Motors Research and Development Center, MC 480-106-224, 30500 Mound Road, Warren, MI 48090-9055, USA. [email protected]

PMID: 16610895 DOI: 10.1021/jp0557767

Abstract

The hydrogen release behavior of the quaternary hydride LiB(0.33)N(0.67)H(2.67) has been successfully improved through the incorporation of small quantities of noble metal. Adding 5 wt % Pd either as Pd metal particles or as PdCl(2) reduced the temperature T(1/2) corresponding to the midpoint of the hydrogen release reaction by DeltaT(1/2) = -43 degrees C and -76 degrees C, respectively. PtCl(2) and Pt nanoparticles supported on a Vulcan carbon substrate proved to be even more effective, with DeltaT(1/2) = -90 degrees C. The amount of NH(3) released during dehydrogenation is reduced compared to that from additive-free material, and, more importantly, at temperatures below 210 degrees C hydrogen is released with no detectable NH(3). In contrast to additive-free LiB(0.33)N(0.67)H(2.67), which melts completely above 190 degrees C and releases hydrogen from the liquid state only above approximately 250 degrees C, hydrogen release from LiB(0.33)N(0.67)H(2.67) + 5 wt % Pt/Vulcan carbon is accompanied by partial melting plus a cascade through a series of solid intermediate phases. Calorimetric measurements indicate that both additive-free and Pt-added LiB(0.33)N(0.67)H(2.67) release hydrogen exothermically, and hence the reverse reaction is thermodynamically unfavorable. By exposing partially dehydrogenated samples to high H(2) pressures at modest temperatures, fractional hydrogen uptake (roughly 15% of the released hydrogen) has been achieved. The mechanism by which noble metals promote hydrogen release is not known, but the behavior is consistent with that expected for a catalyst, including a large effect with small additions and saturation of the effect at low concentration.

Publication Types