Display options
Share it on

Protoplasma. 2006 May;227(2):129-38. doi: 10.1007/s00709-006-0145-7. Epub 2006 May 30.

Ultrastructure of the membrane systems in the unicellular cyanobacterium Synechocystis sp. strain PCC 6803.

Protoplasma

Michelle Liberton, R Howard Berg, John Heuser, Robin Roth, Himadri B Pakrasi

Affiliations

  1. Department of Biology, Washington University, St. Louis, Missouri 63130, USA.

PMID: 16736255 DOI: 10.1007/s00709-006-0145-7

Abstract

Among prokaryotes, cyanobacteria are unique in having highly differentiated internal membrane systems. Like other Gram-negative bacteria, cyanobacteria such as Synechocystis sp. strain PCC 6803 have a cell envelope consisting of a plasma membrane, peptidoglycan layer, and outer membrane. In addition, these organisms have an internal system of thylakoid membranes where the electron transfer reactions of photosynthesis and respiration occur. A long-standing controversy concerning the cellular ultrastructures of these organisms has been whether the thylakoid membranes exist inside the cell as separate compartments, or if they have physical continuity with the plasma membrane. Advances in cellular preservation protocols as well as in image acquisition and manipulation techniques have facilitated a new examination of this topic. We have used a combination of electron microscopy techniques, including freeze-etched as well as freeze-substituted preparations, in conjunction with computer-aided image processing to generate highly detailed images of the membrane systems in Synechocystis cells. We show that the thylakoid membranes are in fact physically discontinuous from the plasma membrane in this cyanobacterium. Thylakoid membranes in Synechocystis sp. strain PCC 6803 thus represent bona fide intracellular organelles, the first example of such compartments in prokaryotic cells.

References

  1. Mol Microbiol. 1998 Nov;30(3):467-74 - PubMed
  2. Mol Microbiol. 2003 Jun;48(6):1481-9 - PubMed
  3. Biochemistry. 2002 Jun 25;41(25):8004-12 - PubMed
  4. Annu Rev Microbiol. 1984;38:1-25 - PubMed
  5. Micron. 2002;33(3):257-77 - PubMed
  6. J Bacteriol. 2005 Jan;187(1):224-30 - PubMed
  7. Prog Clin Biol Res. 1989;295:71-83 - PubMed
  8. J Biol Chem. 2004 Oct 29;279(44):45417-22 - PubMed
  9. Biochim Biophys Acta. 1989 Jan 23;1007(1):36-43 - PubMed
  10. Microbiol Rev. 1991 Dec;55(4):684-705 - PubMed
  11. Biochim Biophys Acta. 1972 Apr 18;265(2):209-39 - PubMed
  12. Proc Natl Acad Sci U S A. 2001 Nov 6;98(23):13443-8 - PubMed
  13. J Bacteriol. 2000 Mar;182(5):1191-9 - PubMed
  14. Proc Natl Acad Sci U S A. 2001 Mar 27;98(7):4238-42 - PubMed
  15. Plant Cell Physiol. 2003 Feb;44(2):217-22 - PubMed
  16. Trends Microbiol. 2002 Mar;10(3):134-42 - PubMed
  17. J Ultrastruct Res. 1983 Jul;84(1):73-82 - PubMed
  18. J Biol Chem. 2005 Feb 25;280(8):6548-53 - PubMed
  19. J Phycol. 1968 Mar;4(1):1-4 - PubMed
  20. FEMS Microbiol Lett. 2002 Aug 27;214(1):25-30 - PubMed
  21. Trends Plant Sci. 2002 Jun;7(6):237-40 - PubMed
  22. J Cell Biol. 1983 Sep;97(3):713-22 - PubMed
  23. Arch Microbiol. 2001 Jul;176(1-2):9-18 - PubMed
  24. J Cell Biol. 1988 Sep;107(3):877-86 - PubMed
  25. Plant Physiol. 1994 Sep;106(1):251-262 - PubMed

MeSH terms

Publication Types