Display options
Share it on

Front Zool. 2006 Sep 01;3:13. doi: 10.1186/1742-9994-3-13.

The complete sequences and gene organisation of the mitochondrial genomes of the heterodont bivalves Acanthocardia tuberculata and Hiatella arctica--and the first record for a putative Atpase subunit 8 gene in marine bivalves.

Frontiers in zoology

Hermann Dreyer, Gerhard Steiner

Affiliations

  1. Emerging Focus Molecular Biology, Department of Evolutionary Biology, University of Vienna, 1090 Vienna, Austria. [email protected]

PMID: 16948842 PMCID: PMC1570459 DOI: 10.1186/1742-9994-3-13

Abstract

BACKGROUND: Mitochondrial (mt) gene arrangement is highly variable among molluscs and especially among bivalves. Of the 30 complete molluscan mt-genomes published to date, only one is of a heterodont bivalve, although this is the most diverse taxon in terms of species numbers. We determined the complete sequence of the mitochondrial genomes of Acanthocardia tuberculata and Hiatella arctica, (Mollusca, Bivalvia, Heterodonta) and describe their gene contents and genome organisations to assess the variability of these features among the Bivalvia and their value for phylogenetic inference.

RESULTS: The size of the mt-genome in Acanthocardia tuberculata is 16.104 basepairs (bp), and in Hiatella arctica 18.244 bp. The Acanthocardia mt-genome contains 12 of the typical protein coding genes, lacking the Atpase subunit 8 (atp8) gene, as all published marine bivalves. In contrast, a complete atp8 gene is present in Hiatella arctica. In addition, we found a putative truncated atp8 gene when re-annotating the mt-genome of Venerupis philippinarum. Both mt-genomes reported here encode all genes on the same strand and have an additional trnM. In Acanthocardia several large non-coding regions are present. One of these contains 3.5 nearly identical copies of a 167 bp motive. In Hiatella, the 3' end of the NADH dehydrogenase subunit (nad)6 gene is duplicated together with the adjacent non-coding region. The gene arrangement of Hiatella is markedly different from all other known molluscan mt-genomes, that of Acanthocardia shows few identities with the Venerupis philippinarum. Phylogenetic analyses on amino acid and nucleotide levels robustly support the Heterodonta and the sister group relationship of Acanthocardia and Venerupis. Monophyletic Bivalvia are resolved only by a Bayesian inference of the nucleotide data set. In all other analyses the two unionid species, being to only ones with genes located on both strands, do not group with the remaining bivalves.

CONCLUSION: The two mt-genomes reported here add to and underline the high variability of gene order and presence of duplications in bivalve and molluscan taxa. Some genomic traits like the loss of the atp8 gene or the encoding of all genes on the same strand are homoplastic among the Bivalvia. These characters, gene order, and the nucleotide sequence data show considerable potential of resolving phylogenetic patterns at lower taxonomic levels.

References

  1. Nucleic Acids Res. 1999 Apr 15;27(8):1767-80 - PubMed
  2. J Mol Evol. 1999 May;48(5):542-54 - PubMed
  3. Mol Biol Evol. 2000 Apr;17(4):540-52 - PubMed
  4. Genetics. 2000 May;155(1):245-59 - PubMed
  5. Mol Biol Evol. 2001 Sep;18(9):1734-44 - PubMed
  6. Mol Biol Evol. 2002 Feb;19(2):127-37 - PubMed
  7. Bioinformatics. 2003 Aug 12;19(12):1572-4 - PubMed
  8. Mol Biol Evol. 2003 Nov;20(11):1854-66 - PubMed
  9. Genetics. 1992 Jun;131(2):397-412 - PubMed
  10. Int Rev Cytol. 1992;141:173-216 - PubMed
  11. Bioinformatics. 2004 Feb 12;20(3):407-15 - PubMed
  12. Mol Biol Evol. 2004 Aug;21(8):1492-503 - PubMed
  13. Mol Phylogenet Evol. 2004 May;31(2):605-17 - PubMed
  14. J Mol Evol. 2004 Apr;58(4):376-89 - PubMed
  15. Bioinformatics. 2004 Nov 22;20(17):3252-5 - PubMed
  16. Mol Biol Evol. 2004 Nov;21(11):2034-46 - PubMed
  17. Mol Biol Evol. 2005 Apr;22(4):952-67 - PubMed
  18. Syst Biol. 2005 Apr;54(2):277-98 - PubMed
  19. Mar Biotechnol (NY). 2005 Nov-Dec;7(6):697-712 - PubMed
  20. Genetics. 2006 Feb;172(2):1107-19 - PubMed
  21. Mol Phylogenet Evol. 2006 Mar;38(3):648-58 - PubMed
  22. CSH Protoc. 2007 Jul 01;2007:pdb.top17 - PubMed
  23. Mol Biol Evol. 1990 Jan;7(1):45-64 - PubMed
  24. Evolution. 1996 Dec;50(6):2276-2286 - PubMed
  25. Evolution. 1996 Apr;50(2):952-957 - PubMed
  26. J Mol Biol. 1982 May 5;157(1):105-32 - PubMed
  27. Nature. 1981 Apr 9;290(5806):470-4 - PubMed
  28. Mol Biol Evol. 1995 Sep;12(5):735-47 - PubMed
  29. Genetics. 1994 Oct;138(2):423-43 - PubMed
  30. Mol Mar Biol Biotechnol. 1994 Oct;3(5):294-9 - PubMed
  31. Comput Appl Biosci. 1996 Aug;12(4):357-8 - PubMed
  32. Genetics. 1997 Mar;145(3):749-58 - PubMed
  33. Nucleic Acids Res. 1997 Dec 15;25(24):4876-82 - PubMed
  34. Nucleic Acids Res. 1998 Feb 15;26(4):865-78 - PubMed
  35. Nucleic Acids Res. 1999 Jan 15;27(2):573-80 - PubMed
  36. Bioinformatics. 1998;14(9):817-8 - PubMed

Publication Types