Display options
Share it on

Indian Pacing Electrophysiol J. 2004 Apr 01;4(2):85-92.

Current concepts on ventricular fibrillation: a vicious circle of cardiomyocyte calcium overload in the initiation, maintenance, and termination of ventricular fibrillation.

Indian pacing and electrophysiology journal

Christian E Zaugg

Affiliations

  1. Department of Research, Experimental Cardiology Research Group, University Hospital Basel, Switzerland. [email protected]

PMID: 16943975 PMCID: PMC1501068

Abstract

Based on recent experimental studies, this review article introduces the novel concept that cardiomyocyte Ca2+ and ventricular fibrillation (VF) are mutually related, forming a self-maintaining vicious circle in the initiation, maintenance, and termination of VF. On the one hand, elevated myocyte Ca2+ can cause delayed afterdepolarizations, triggered activity, and consequently life-threatening ventricular tachyarrhythmias in various pathological conditions such as digitalis toxicity, myocardial ischemia, or heart failure. On the other hand, VF itself directly and rapidly causes progressive myocyte Ca2+ overload that maintains VF and renders termination of VF increasingly difficult. Accordingly, energy levels for successful electrical defibrillation (defibrillation thresholds) increase as both VF and Ca2+ overload progress. Furthermore, VF-induced myocyte Ca2+ overload can promote re-induction of VF after defibrillation and/or postfibrillatory myocardial dysfunction (postresuscitation stunning) due to reduced myofilament Ca2+ responsiveness. The probability of these adverse events is best reduced by early detection and rapid termination of VF to prevent or limit Ca2+ overload. Early additional therapy targeting transsarcolemmal Ca2+ entry, particularly during the first 2 min of VF, may partially prevent myocyte Ca2+ overload and thus, increase the likelihood of successful defibrillation as well as prevent postfibrillatory myocardial dysfunction.

References

  1. Am J Physiol. 1994 Apr;266(4 Pt 2):H1473-84 - PubMed
  2. Cardiovasc Res. 1995 Aug;30(2):212-21 - PubMed
  3. Circulation. 2003 May 13;107(18):2355-60 - PubMed
  4. J Am Coll Cardiol. 1996 Jul;28(1):232-40 - PubMed
  5. Circulation. 1996 May 1;93(9):1747-54 - PubMed
  6. J Mol Cell Cardiol. 1996 May;28(5):1059-72 - PubMed
  7. Circulation. 1995 Oct 1;92(7):1954-68 - PubMed
  8. Am Heart J. 1995 Aug;130(2):351-8 - PubMed
  9. Hypertension. 1997 Sep;30(3 Pt 1):461-7 - PubMed
  10. J Am Coll Cardiol. 1998 Jan;31(1):167-73 - PubMed
  11. Circ Res. 2004 Mar 5;94(4):471-7 - PubMed
  12. J Pharmacol Exp Ther. 1995 Oct;275(1):254-62 - PubMed
  13. J Cardiovasc Electrophysiol. 2002 Oct;13(10):1017-24 - PubMed
  14. Basic Res Cardiol. 1992;87 Suppl 2:131-43 - PubMed
  15. Circulation. 1989 Aug;80(2):369-79 - PubMed
  16. Circulation. 1997 Sep 2;96(5):1542-50 - PubMed
  17. Circ Res. 1991 May;68(5):1378-89 - PubMed
  18. Circ Res. 1991 Jul;69(1):45-51 - PubMed
  19. J Mol Cell Cardiol. 1998 Nov;30(11):2183-92 - PubMed
  20. Cell. 2003 Jun 27;113(7):829-40 - PubMed
  21. Circulation. 1986 May;73(5):1022-8 - PubMed
  22. Physiol Rev. 1999 Apr;79(2):609-34 - PubMed
  23. Proc Natl Acad Sci U S A. 2003 Sep 30;100(20):11759-64 - PubMed
  24. Pacing Clin Electrophysiol. 1994 Aug;17(8):1380-90 - PubMed
  25. Circ Res. 1991 Sep;69(3):810-9 - PubMed
  26. Circulation. 1996 Dec 1;94(11):2968-74 - PubMed
  27. Circulation. 1981 Feb;63(2):323-32 - PubMed
  28. Crit Care Med. 1993 Jul;21(7):1046-50 - PubMed
  29. J Cardiovasc Electrophysiol. 1993 Aug;4(4):473-89 - PubMed

Publication Types