Display options
Share it on

Microb Cell Fact. 2006 Nov 14;5:33. doi: 10.1186/1475-2859-5-33.

Application of a wide-range yeast vector (CoMed) system to recombinant protein production in dimorphic Arxula adeninivorans, methylotrophic Hansenula polymorpha and other yeasts.

Microbial cell factories

Gerhard Steinborn, Erik Böer, Anja Scholz, Kristina Tag, Gotthard Kunze, Gerd Gellissen

Affiliations

  1. Institut für Pflanzengenetik und Kulturpflanzenforschung, Corrensstr. 3, 06466 Gatersleben, Germany. [email protected]

PMID: 17105649 PMCID: PMC1654170 DOI: 10.1186/1475-2859-5-33

Abstract

BACKGROUND: Yeasts provide attractive expression platforms in combining ease of genetic manipulation and fermentation of a microbial organism with the capability to secrete and to modify proteins according to a general eukaryotic scheme. However, early restriction to a single yeast platform can result in costly and time-consuming failures. It is therefore advisable to assess several selected systems in parallel for the capability to produce a particular protein in desired amounts and quality. A suitable vector must contain a targeting sequence, a promoter element and a selection marker that function in all selected organisms. These criteria are fulfilled by a wide-range integrative yeast expression vector (CoMed) system based on A. adeninivorans- and H. polymorpha-derived elements that can be introduced in a modular way.

RESULTS: The vector system and a selection of modular elements for vector design are presented. Individual single vector constructs were used to transform a range of yeast species. Various successful examples are described. A vector with a combination of an rDNA sequence for genomic targeting, the E. coli-derived hph gene for selection and the A. adeninivorans-derived TEF1 promoter for expression control of a GFP (green fluorescent protein) gene was employed in a first example to transform eight different species including Hansenula polymorpha, Arxula adeninivorans and others. In a second example, a vector for the secretion of IL-6 was constructed, now using an A. adeninivorans-derived LEU2 gene for selection of recombinants in a range of auxotrophic hosts. In this example, differences in precursor processing were observed: only in A. adeninivorans processing of a MFalpha1/IL-6 fusion was performed in a faithful way.

CONCLUSION: rDNA targeting provides a tool to co-integrate up to 3 different expression plasmids by a single transformation step. Thus, a versatile system is at hand that allows a comparative assessment of newly introduced metabolic pathways in several organisms or a comparative co-expression of bottleneck genes in cases where production or secretion of a certain product is impaired.

References

  1. Antonie Van Leeuwenhoek. 1994;65(1):29-34 - PubMed
  2. EMBO J. 1991 Mar;10(3):555-62 - PubMed
  3. Appl Microbiol Biotechnol. 2002 May;58(6):797-805 - PubMed
  4. J Interferon Res. 1986 Dec;6(6):687-95 - PubMed
  5. Biosens Bioelectron. 2006 May 15;21(11):2078-85 - PubMed
  6. J Biochem. 1985 Jan;97(1):153-9 - PubMed
  7. J Pediatr. 1992 Jul;121(1):119-24 - PubMed
  8. Yeast. 2005 May;22(7):523-35 - PubMed
  9. Appl Microbiol Biotechnol. 1996 Nov;46(4):365-70 - PubMed
  10. FEMS Yeast Res. 2003 Apr;3(2):223-32 - PubMed
  11. FEMS Yeast Res. 2005 Nov;5(11):1047-54 - PubMed
  12. Appl Microbiol Biotechnol. 1998 Sep;50(3):331-8 - PubMed
  13. Lymphokine Cytokine Res. 1991 Jun;10(3):213-8 - PubMed
  14. Biochem J. 1995 May 15;308 ( Pt 1):9-14 - PubMed
  15. FEMS Yeast Res. 2003 Nov;4(2):185-93 - PubMed
  16. Gene. 1984 Apr;28(1):55-64 - PubMed
  17. Gene. 1996 Oct 24;177(1-2):163-7 - PubMed
  18. Gene. 1984 Jul-Aug;29(1-2):113-24 - PubMed
  19. Yeast. 1991 Oct;7(7):691-2 - PubMed
  20. J Biochem. 1988 Jul;104(1):30-4 - PubMed
  21. Yeast. 1996 Sep 30;12(12):1209-17 - PubMed
  22. Biochim Biophys Acta. 1999 Mar 9;1410(3):287-98 - PubMed
  23. Eur J Biochem. 1991 May 23;198(1):217-22 - PubMed
  24. FEMS Yeast Res. 2003 Nov;4(2):207-15 - PubMed
  25. Yeast. 1997 Mar 30;13(4):337-51 - PubMed
  26. FEMS Yeast Res. 2002 Aug;2(3):363-9 - PubMed
  27. Antonie Van Leeuwenhoek. 2005 Apr;87(3):233-43 - PubMed
  28. Curr Genet. 1985;10(1):21-7 - PubMed
  29. J Ind Microbiol Biotechnol. 2004 Jun;31(5):223-8 - PubMed
  30. Yeast. 1998 Oct;14(14):1267-83 - PubMed
  31. Appl Microbiol Biotechnol. 2003 Oct;62(5-6):528-35 - PubMed
  32. Postgrad Med J. 1987;63 Suppl 2:65-70 - PubMed
  33. J Biol Chem. 2006 Mar 10;281(10):6261-72 - PubMed
  34. Gene. 2001 Jul 11;272(1-2):103-10 - PubMed
  35. Arch Microbiol. 2000 Apr;173(4):253-61 - PubMed
  36. Appl Microbiol Biotechnol. 2004 Apr;64(3):376-81 - PubMed
  37. N Engl J Med. 1995 Jun 15;332(24):1594-9 - PubMed
  38. FEMS Yeast Res. 2002 Aug;2(3):349-61 - PubMed
  39. Science. 2003 Aug 29;301(5637):1244-6 - PubMed
  40. J Protein Chem. 1993 Aug;12(4):489-97 - PubMed
  41. Anal Biochem. 1976 May 7;72:248-54 - PubMed
  42. FEMS Yeast Res. 2005 Nov;5(11):1079-96 - PubMed
  43. Curr Genet. 1998 Feb;33(2):157-63 - PubMed
  44. Antonie Van Leeuwenhoek. 2004 Aug;86(2):121-34 - PubMed
  45. Appl Microbiol Biotechnol. 2000 Dec;54(6):741-50 - PubMed
  46. Gene. 1984 Nov;31(1-3):257-61 - PubMed
  47. J Biotechnol. 2007 Jan 10;127(3):392-401 - PubMed
  48. Appl Microbiol Biotechnol. 2004 Jul;65(1):110-8 - PubMed
  49. Mol Gen Genet. 1976 Nov 17;148(3):287-94 - PubMed

Publication Types