Display options
Share it on

Proc Natl Acad Sci U S A. 2007 Jan 09;104(2):424-8. doi: 10.1073/pnas.0607138104. Epub 2006 Dec 27.

Evidence of the existence of the low-density liquid phase in supercooled, confined water.

Proceedings of the National Academy of Sciences of the United States of America

Francesco Mallamace, Matteo Broccio, Carmelo Corsaro, Antonio Faraone, Domenico Majolino, Valentina Venuti, Li Liu, Chung-Yuan Mou, Sow-Hsin Chen

Affiliations

  1. Dipartimento di Fisica and Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia, Universitá di Messina, C. da Papardo, S. ta Sperone 31, 98166 Messina, Italy. [email protected]

PMID: 17192402 PMCID: PMC1766400 DOI: 10.1073/pnas.0607138104

Abstract

By confining water in a nanoporous structure so narrow that the liquid could not freeze, it is possible to study properties of this previously undescribed system well below its homogeneous nucleation temperature TH = 231 K. Using this trick, we were able to study, by means of a Fourier transform infrared spectroscopy, vibrational spectra (HOH bending and OH-stretching modes) of deeply supercooled water in the temperature range 183 < T < 273 K. We observed, upon decreasing temperature, the building up of a new population of hydrogen-bonded oscillators centered around 3,120 cm(-1), the contribution of which progressively dominates the spectra as one enters into the deeply supercooled regime. We determined that the fractional weight of this spectral component reaches 50% just at the temperature, TL approximately 225 K, where the confined water shows a fragile-to-strong dynamic cross-over phenomenon [Ito, K., Moynihan, C. T., Angell, C. A. (1999) Nature 398:492-494]. Furthermore, the fact that the corresponding OH stretching spectral peak position of the low-density-amorphous solid water occurs exactly at 3,120 cm(-1) [Sivakumar, T. C., Rice, S. A., Sceats, M. G. (1978) J. Chem. Phys. 69:3468-3476.] strongly suggests that these oscillators originate from existence of the low-density-liquid phase derived from the occurrence of the first-order liquid-liquid (LL) phase transition and the associated LL critical point in supercooled water proposed earlier by a computer molecular dynamics simulation [Poole, P. H., Sciortino, F., Essmann, U., Stanley, H. E. (1992) Nature 360:324-328].

References

  1. Phys Rev Lett. 1994 Sep 19;73(12):1632-1635 - PubMed
  2. Annu Rev Phys Chem. 2000;51:99-128 - PubMed
  3. Phys Rev Lett. 2000 Mar 27;84(13):2881-4 - PubMed
  4. Phys Rev A Gen Phys. 1986 Sep;34(3):1714-1719 - PubMed
  5. J Chem Phys. 2005 May 8;122(18):184509 - PubMed
  6. Proc Natl Acad Sci U S A. 2005 Nov 15;102(46):16558-62 - PubMed
  7. Science. 2001 Dec 14;294(5550):2335-8 - PubMed
  8. Nat Mater. 2003 Nov;2(11):739-43 - PubMed
  9. J Chem Phys. 2006 Apr 28;124(16):161102 - PubMed
  10. Phys Rev Lett. 2005 Sep 9;95(11):117802 - PubMed

Publication Types