Display options
Share it on

Psychobiology (Austin, Tex). 1989;17(1):29-33. doi: 10.3758/bf03337814.

Associative Processes in Early Olfactory Preference Acquisition: Neural and Behavioral Consequences.

Psychobiology (Austin, Tex.)

Regina M Sullivan, Donald A Wilson, Michael Leon

Affiliations

  1. University of California, Irvine, California.

PMID: 17572798 PMCID: PMC1892210 DOI: 10.3758/bf03337814

Abstract

Acquisition of behavioral conditioned responding and learned odor preferences during olfactory classical conditioning in rat pups requires forward or simultaneous pairings of the conditioned stimulus (CS) and the unconditioned stimulus (US). Other temporal relationships between the CS and US do not usually result in learning. The present study examined the influence of this CS-US relationship upon the neural olfactory bulb modifications that are acquired during early classical conditioning. Wistar rat pups were trained from Postnatal Days (PN) 1-18 with either forward (odor overlapping temporally with reinforcing stroking) or backward (stroking followed by odor) CS-US pairings. On PN 19, pups received either a behavioral odor preference test to the odor CS or an injection of (14)C 2-DG and exposure to the odor CS, or olfactory bulb single unit responses were recorded in response to exposure to the odor CS. Only pups that received forward presentations of the CS and US exhibited both a preference for the CS and modified olfactory bulb neural responses to the CS. These results, then, suggest that the modified olfactory bulb neural responses acquired during classical conditioning are guided by the same temporal constraints as those which govern the acquisition of behavioral conditioned responses.

References

  1. Brain Res. 1980 Apr 21;188(1):139-54 - PubMed
  2. Physiol Behav. 1974 Sep;13(3):441-53 - PubMed
  3. Dev Psychobiol. 1984 Jul;17(4):357-81 - PubMed
  4. Psychol Rev. 1967 Jan;74(1):71-80 - PubMed
  5. J Neurophysiol. 1987 Sep;58(3):510-24 - PubMed
  6. Behav Neural Biol. 1980 May;29(1):132-6 - PubMed
  7. Proc Soc Exp Biol Med. 1984 Feb;175(2):135-46 - PubMed
  8. Science. 1978 Sep 15;201(4360):1034-6 - PubMed
  9. Brain Res. 1981 Sep;254(2):243-56 - PubMed
  10. Brain Res. 1985 Mar 11;329(1-2):294-9 - PubMed
  11. Science. 1978 Jan 27;199(4327):445-7 - PubMed
  12. Brain Res. 1983 Mar 14;263(1):97-103 - PubMed
  13. J Neurophysiol. 1988 Jun;59(6):1770-82 - PubMed
  14. Physiol Behav. 1977 Nov;19(5):685-8 - PubMed
  15. Brain Res. 1981 Aug 3;217(2):279-93 - PubMed
  16. J Neurosci. 1987 Oct;7(10 ):3154-62 - PubMed
  17. J Neurochem. 1977 May;28(5):897-916 - PubMed
  18. Brain Res. 1986 Apr 23;371(2):400-3 - PubMed
  19. Dev Psychobiol. 1974 Nov;7(6):563-77 - PubMed
  20. Dev Psychobiol. 1982 Jul;15(4):379-97 - PubMed
  21. Brain Res. 1988 Jul 1;470(1):69-75 - PubMed
  22. Brain Res. 1987 Dec 1;433(2):309-13 - PubMed
  23. Dev Psychobiol. 1986 Nov;19(6):625-35 - PubMed
  24. Brain Res. 1987 Oct;432(2):307-11 - PubMed
  25. Neurosci Biobehav Rev. 1982 Winter;6(4):409-20 - PubMed
  26. Science. 1984 Aug 24;225(4664):849-51 - PubMed
  27. Brain Res. 1986 Jun;392(1-2):278-82 - PubMed
  28. Commun Psychopharmacol. 1979;3(5):363-70 - PubMed
  29. Brain Res. 1985 Oct;354(2):314-7 - PubMed
  30. Brain Res. 1975 Nov 21;98(3):596-600 - PubMed
  31. Physiol Behav. 1988;44(1):85-90 - PubMed
  32. Dev Psychobiol. 1988 Apr;21(3):215-23 - PubMed
  33. Dev Psychobiol. 1986 Nov;19(6):615-23 - PubMed
  34. Brain Res. 1982 Aug 5;245(1):17-25 - PubMed
  35. J Comp Neurol. 1979 Jun 15;185(4):715-34 - PubMed

Publication Types

Grant support