Display options
Share it on

J Circadian Rhythms. 2008 Mar 20;6:5. doi: 10.1186/1740-3391-6-5.

SCN-AVP release of mPer1/mPer2 double-mutant mice in vitro.

Journal of circadian rhythms

Daan R van der Veen, Ellis Ga Mulder, Henrik Oster, Menno P Gerkema, Roelof A Hut

Affiliations

  1. Department of Chronobiology, University of Groningen, P,O, Box 14, 9750 AA Haren, The Netherlands. [email protected].

PMID: 18355404 PMCID: PMC2277380 DOI: 10.1186/1740-3391-6-5

Abstract

BACKGROUND: Circadian organisation of behavioural and physiological rhythms in mammals is largely driven by the clock in the suprachiasmatic nuclei (SCN) of the hypothalamus. In this clock, a molecular transcriptional repression and activation mechanism generates near 24 hour rhythms. One of the outputs of the molecular clock in specific SCN neurons is arginine-vasopressin (AVP), which is responsive to transcriptional activation by clock gene products. As negative regulators, the protein products of the period genes are thought to repress transcriptional activity of the positive limb after heterodimerisation with CRYPTOCHROME. When both the Per1 and Per2 genes are dysfunctional by targeted deletion of the PAS heterodimer binding domain, mice lose circadian organization of behaviour upon release into constant environmental conditions. To which degree the period genes are involved in the control of AVP output is unknown.

METHODS: Using an in vitro slice culture setup, SCN-AVP release of cultures made of 10 wildtype and 9 Per1/2 double-mutant mice was assayed. Mice were sacrificed in either the early light phase of the light-dark cycle, or in the early subjective day on the first day of constant dark.

RESULTS: Here we report that in arrhythmic homozygous Per1/2 double-mutant mice there is still a diurnal peak in in vitro AVP release from the SCN similar to that of wildtypes but distinctively different from the release pattern from the paraventricular nucleus. Such a modulation of AVP release is unexpected in mice where the circadian clockwork is thought to be disrupted.

CONCLUSION: Our results suggest that the circadian clock in these animals, although deficient in (most) behavioural and molecular rhythms, may still be (partially) functional, possibly as an hourglass mechanism. The level of perturbation of the clock in Per1/2 double mutants may therefore be less than was originally thought.

References

  1. Cell. 2007 May 4;129(3):605-16 - PubMed
  2. Brain Res. 1996 Jun 17;724(2):191-9 - PubMed
  3. Science. 2000 May 12;288(5468):1013-9 - PubMed
  4. Brain Res. 1995 Jun 5;682(1-2):75-82 - PubMed
  5. Cell. 2007 Jan 12;128(1):59-70 - PubMed
  6. Cell. 1997 Sep 19;90(6):1003-11 - PubMed
  7. Brain Res Mol Brain Res. 1994 Jul;24(1-4):179-84 - PubMed
  8. Neuron. 1998 Jun;20(6):1103-10 - PubMed
  9. J Biol Rhythms. 2002 Jun;17(3):202-9 - PubMed
  10. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2008 Mar;194(3):235-42 - PubMed
  11. Proc Natl Acad Sci U S A. 1998 May 12;95(10):5474-9 - PubMed
  12. Nature. 1999 Jul 8;400(6740):169-73 - PubMed
  13. Neuron. 2001 May;30(2):525-36 - PubMed
  14. Science. 1999 Oct 22;286(5440):768-71 - PubMed
  15. Proc Natl Acad Sci U S A. 1972 Jun;69(6):1583-6 - PubMed
  16. Nature. 1999 Apr 15;398(6728):627-30 - PubMed
  17. Cell. 1998 Jun 12;93(6):929-37 - PubMed
  18. Cell. 2000 Dec 22;103(7):1009-17 - PubMed
  19. Brain Res. 1994 Mar 7;639(1):93-101 - PubMed
  20. Cell. 1999 Jul 23;98(2):193-205 - PubMed
  21. Curr Biol. 2002 Jul 9;12(13):1130-3 - PubMed
  22. EMBO J. 2001 Aug 1;20(15):3967-74 - PubMed
  23. Brain Res. 2005 Oct 26;1060(1-2):16-25 - PubMed
  24. Brain Res. 2002 May 17;936(1-2):38-46 - PubMed
  25. Cell Tissue Res. 1975;156(3):377-80 - PubMed
  26. Biochem Biophys Res Commun. 1997 Apr 7;233(1):258-64 - PubMed
  27. Brain Res Bull. 1993;32(6):623-7 - PubMed
  28. J Theor Biol. 1978 May 8;72(1):131-60 - PubMed
  29. Peptides. 1998;19(5):827-32 - PubMed
  30. J Neurosci. 2000 Oct 15;20(20):7525-30 - PubMed
  31. Cell. 1997 May 16;89(4):641-53 - PubMed
  32. Science. 1986 Apr 18;232(4748):390-3 - PubMed
  33. Genes Dev. 2000 Jun 1;14(11):1353-63 - PubMed
  34. Chronobiol Int. 1999 Nov;16(6):745-50 - PubMed
  35. J Biol Rhythms. 2002 Apr;17(2):107-9 - PubMed
  36. Brain Res. 1972 Jul 13;42(1):201-6 - PubMed
  37. J Biol Chem. 2002 Sep 27;277(39):36009-17 - PubMed
  38. Proc Natl Acad Sci U S A. 1998 May 26;95(11):6097-102 - PubMed
  39. Neuroreport. 2000 Nov 9;11(16):3555-8 - PubMed
  40. Chronobiol Int. 2003 Jul;20(4):683-95 - PubMed
  41. Cell. 1999 Jan 8;96(1):57-68 - PubMed
  42. Science. 1998 Jun 5;280(5369):1564-9 - PubMed
  43. Cell Tissue Res. 2002 Jul;309(1):89-98 - PubMed
  44. Cell. 2001 Jun 1;105(5):683-94 - PubMed
  45. Cell. 1997 Dec 26;91(7):1055-64 - PubMed
  46. J Biol Rhythms. 2001 Apr;16(2):100-4 - PubMed
  47. Science. 1994 Apr 29;264(5159):719-25 - PubMed
  48. Nature. 1997 Oct 2;389(6650):512-6 - PubMed
  49. Mol Cell Biol. 2000 Sep;20(17):6269-75 - PubMed

Publication Types