Display options
Share it on

EURASIP J Bioinform Syst Biol. 2006;23613. doi: 10.1155/BSB/2006/23613.

Analysis of free energy signals arising from nucleotide hybridization between rRNA and mRNA sequences during translation in eubacteria.

EURASIP journal on bioinformatics & systems biology

Lalit Ponnala, Anne-Marie Stomp, Donald L Bitzer, Mladen A Vouk

Affiliations

  1. Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC 27695, USA.

PMID: 18427589 PMCID: PMC3171316 DOI: 10.1155/BSB/2006/23613

Abstract

A decoding algorithm is tested that mechanistically models the progressive alignments that arise as the mRNA moves past the rRNA tail during translation elongation. Each of these alignments provides an opportunity for hybridization between the single-stranded, 3'-terminal nucleotides of the 16S rRNA and the spatially accessible window of mRNA sequence, from which a free energy value can be calculated. Using this algorithm we show that a periodic, energetic pattern of frequency 1/3 is revealed. This periodic signal exists in the majority of coding regions of eubacterial genes, but not in the non-coding regions encoding the 16S and 23S rRNAs. Signal analysis reveals that the population of coding regions of each bacterial species has a mean phase that is correlated in a statistically significant way with species (G + C) content. These results suggest that the periodic signal could function as a synchronization signal for the maintenance of reading frame and that codon usage provides a mechanism for manipulation of signal phase.

References

  1. Nucleic Acids Res. 1982 Nov 25;10(22):7055-74 - PubMed
  2. Genome Res. 2003 Dec;13(12):2665-73 - PubMed
  3. Bioinformatics. 1999 Jul-Aug;15(7-8):578-81 - PubMed
  4. Genes Dev. 2003 Feb 15;17(4):438-42 - PubMed
  5. Bioorg Khim. 2001 Jul-Aug;27(4):282-90 - PubMed
  6. Proc Natl Acad Sci U S A. 1974 Apr;71(4):1342-6 - PubMed
  7. J Mol Biol. 1999 May 21;288(5):911-40 - PubMed
  8. Biochemistry. 1998 Oct 20;37(42):14719-35 - PubMed
  9. Riv Biol. 1989;82(3-4):344-5, 416-7 - PubMed
  10. Cell. 2001 Jul 27;106(2):233-41 - PubMed
  11. J Bacteriol. 2002 Oct;184(20):5733-45 - PubMed
  12. RNA. 1996 Dec;2(12):1270-85 - PubMed
  13. Proc Natl Acad Sci U S A. 1975 Dec;72(12):4734-8 - PubMed
  14. EMBO J. 1988 May;7(5):1503-7 - PubMed
  15. Cold Spring Harb Symp Quant Biol. 1987;52:687-93 - PubMed
  16. Proc Natl Acad Sci U S A. 1989 Oct;86(20):7706-10 - PubMed
  17. Proc Natl Acad Sci U S A. 1987 Jul;84(14):4762-6 - PubMed
  18. Nucleic Acids Res. 1993 Aug 25;21(17):4019-23 - PubMed
  19. Nucleic Acids Res. 1989 Apr 25;17(8):2973-85 - PubMed
  20. J Theor Biol. 1994 Nov 21;171(2):215-23 - PubMed
  21. J Mol Biol. 1987 Apr 20;194(4):643-52 - PubMed
  22. Cell. 2000 Sep 1;102(5):615-23 - PubMed
  23. Annu Rev Biochem. 2001;70:39-80 - PubMed
  24. Gene. 1992 Jan 2;110(1):81-8 - PubMed
  25. PLoS Comput Biol. 2006 May;2(5):e57 - PubMed

Publication Types