Display options
Share it on

Front Neurosci. 2007 Oct 15;1(1):131-43. doi: 10.3389/neuro.01.1.1.010.2007. eCollection 2007 Nov.

Ultrastructure of dendritic spines: correlation between synaptic and spine morphologies.

Frontiers in neuroscience

Jon I Arellano, Ruth Benavides-Piccione, Javier Defelipe, Rafael Yuste

Affiliations

  1. Instituto Cajal, Madrid Spain.

PMID: 18982124 PMCID: PMC2518053 DOI: 10.3389/neuro.01.1.1.010.2007

Abstract

Dendritic spines are critical elements of cortical circuits, since they establish most excitatory synapses. Recent studies have reported correlations between morphological and functional parameters of spines. Specifically, the spine head volume is correlated with the area of the postsynaptic density (PSD), the number of postsynaptic receptors and the ready-releasable pool of transmitter, whereas the length of the spine neck is proportional to the degree of biochemical and electrical isolation of the spine from its parent dendrite. Therefore, the morphology of a spine could determine its synaptic strength and learning rules.To better understand the natural variability of neocortical spine morphologies, we used a combination of gold-toned Golgi impregnations and serial thin-section electron microscopy and performed three-dimensional reconstructions of spines from layer 2/3 pyramidal cells from mouse visual cortex. We characterized the structure and synaptic features of 144 completed reconstructed spines, and analyzed their morphologies according to their positions. For all morphological parameters analyzed, spines exhibited a continuum of variability, without clearly distinguishable subtypes of spines or clear dependence of their morphologies on their distance to the soma. On average, the spine head volume was correlated strongly with PSD area and weakly with neck diameter, but not with neck length. The large morphological diversity suggests an equally large variability of synaptic strength and learning rules.

Keywords: PSD; Pyramidal; electron microscopy; serial section

References

  1. Science. 1998 Nov 20;282(5393):1504-8 - PubMed
  2. J Neurocytol. 1977 Jun;6(3):311-37 - PubMed
  3. Z Zellforsch Mikrosk Anat. 1969 Sep 22;100(4):487-506 - PubMed
  4. Neuroscience. 2007 Mar 16;145(2):464-9 - PubMed
  5. J Neurosci. 1983 Feb;3(2):383-8 - PubMed
  6. Neuron. 1998 Sep;21(3):545-59 - PubMed
  7. J Neurocytol. 1977 Apr;6(2):211-30 - PubMed
  8. Anat Embryol (Berl). 1983;167(2):289-310 - PubMed
  9. J Anat. 1959 Oct;93:420-33 - PubMed
  10. Neuroscience. 2006;138(2):403-9 - PubMed
  11. Nat Neurosci. 2000 Jul;3(7):653-9 - PubMed
  12. Prog Neurobiol. 1988;31(6):507-28 - PubMed
  13. Anat Embryol (Berl). 1985;171(2):245-52 - PubMed
  14. J Microsc. 2005 Apr;218(Pt 1):52-61 - PubMed
  15. J Neurophysiol. 1988 Aug;60(2):499-523 - PubMed
  16. Proc Natl Acad Sci U S A. 1999 Mar 30;96(7):4107-12 - PubMed
  17. J Comp Neurol. 1997 Jan 6;377(1):15-28 - PubMed
  18. Cold Spring Harb Symp Quant Biol. 1952;17:189-202 - PubMed
  19. Neuroscience. 2001;102(3):527-40 - PubMed
  20. Nat Rev Neurosci. 2000 Dec;1(3):173-80 - PubMed
  21. J Neurophysiol. 1996 Jun;75(6):2197-210 - PubMed
  22. Nature. 1995 Jun 22;375(6533):682-4 - PubMed
  23. Neuron. 2002 Jan 31;33(3):439-52 - PubMed
  24. J Neurosci. 2000 Nov 15;20(22):8262-8 - PubMed
  25. J Neurosci. 1993 Feb;13(2):413-22 - PubMed
  26. J Neurosci. 1989 Aug;9(8):2982-97 - PubMed
  27. Nature. 2002 Dec 19-26;420(6917):788-94 - PubMed
  28. Science. 1996 May 3;272(5262):716-9 - PubMed
  29. Nature. 1959 Jun 6;183(4675):1592-3 - PubMed
  30. J Neurosci. 1992 Jul;12(7):2685-705 - PubMed
  31. J Anat. 1978 May;126(Pt 1):193-201 - PubMed
  32. Nature. 2002 Dec 19-26;420(6917):812-6 - PubMed
  33. Nature. 2000 Apr 20;404(6780):876-81 - PubMed
  34. Annu Rev Neurosci. 1994;17:341-71 - PubMed
  35. J Neurobiol. 2003 Aug;56(2):95-112 - PubMed
  36. Am J Anat. 1970 Apr;127(4):321-55 - PubMed
  37. Neuron. 1998 May;20(5):847-54 - PubMed
  38. Proc Natl Acad Sci U S A. 2006 Nov 21;103(47):17961-6 - PubMed
  39. Proc R Soc Lond B Biol Sci. 1983 Jul 22;218(1213):455-77 - PubMed
  40. J Neurocytol. 2002 Mar-Jun;31(3-5):337-46 - PubMed
  41. Proc Natl Acad Sci U S A. 2006 Dec 5;103(49):18799-804 - PubMed
  42. Brain Res. 1968 Jul;9(2):268-87 - PubMed
  43. J Neurosci. 1996 May 15;16(10):3274-86 - PubMed
  44. Science. 2001 Aug 3;293(5531):868-72 - PubMed
  45. Proc Natl Acad Sci U S A. 1990 Jul;87(14):5359-62 - PubMed
  46. Neuron. 1997 Sep;19(3):697-709 - PubMed
  47. Nat Neurosci. 2001 Apr;4(4):391-5 - PubMed
  48. Neuron. 1997 Jun;18(6):995-1008 - PubMed
  49. Anat Embryol (Berl). 1985;171(2):235-43 - PubMed
  50. Histol Histopathol. 2003 Apr;18(2):617-34 - PubMed
  51. Annu Rev Neurosci. 2001;24:1071-89 - PubMed
  52. J Cell Sci. 1969 Sep;5(2):509-29 - PubMed
  53. Cereb Cortex. 2000 Oct;10(10):927-38 - PubMed
  54. Proc Natl Acad Sci U S A. 1999 Nov 9;96(23):13438-43 - PubMed

Publication Types