Display options
Share it on

Nature. 2009 Feb 12;457(7231):859-62. doi: 10.1038/nature07751.

Tunable delay of Einstein-Podolsky-Rosen entanglement.

Nature

A M Marino, R C Pooser, V Boyer, P D Lett

Affiliations

  1. Joint Quantum Institute, National Institute of Standards and Technology and University of Maryland, Gaithersburg, Maryland 20899, USA. [email protected]

PMID: 19212406 DOI: 10.1038/nature07751

Abstract

Entangled systems display correlations that are stronger than can be obtained classically. This makes entanglement an essential resource for a number of applications, such as quantum information processing, quantum computing and quantum communications. The ability to control the transfer of entanglement between different locations will play a key role in these quantum protocols and enable quantum networks. Such a transfer requires a system that can delay quantum correlations without significant degradation, effectively acting as a short-term quantum memory. An important benchmark for such systems is the ability to delay Einstein-Podolsky-Rosen (EPR) levels of entanglement and to be able to tune the delay. EPR entanglement is the basis for a number of quantum protocols, allowing the remote inference of the properties of one system (to better than its standard quantum limit) through measurements on the other correlated system. Here we show that a four-wave mixing process based on a double-lambda scheme in hot (85)Rb vapour allows us to obtain an optically tunable delay for EPR entangled beams of light. A significant maximum delay, of the order of the width of the cross-correlation function, is achieved. The four-wave mixing also preserves the quantum spatial correlations of the entangled beams. We take advantage of this property to delay entangled images, making this the first step towards a quantum memory for images.

References

  1. Phys Rev Lett. 2008 Apr 4;100(13):133602 - PubMed
  2. Nature. 2008 Jun 19;453(7198):1023-30 - PubMed
  3. Phys Rev Lett. 2008 Jul 25;101(4):040501 - PubMed
  4. Phys Rev Lett. 2008 Apr 11;100(14):143601 - PubMed
  5. Phys Rev Lett. 2008 Mar 28;100(12):123903 - PubMed
  6. Nature. 2008 Mar 6;452(7183):67-71 - PubMed
  7. Phys Rev Lett. 1992 Jun 22;68(25):3663-3666 - PubMed
  8. Science. 2008 Jul 25;321(5888):544-7 - PubMed
  9. Phys Rev Lett. 2007 Oct 5;99(14):143601 - PubMed
  10. Phys Rev Lett. 2008 Mar 7;100(9):093602 - PubMed
  11. Phys Rev Lett. 2007 Feb 9;98(6):060502 - PubMed
  12. Phys Rev Lett. 2008 Mar 7;100(9):093601 - PubMed
  13. Nature. 2005 Dec 8;438(7069):837-41 - PubMed
  14. Nature. 2005 Dec 8;438(7069):833-6 - PubMed
  15. Phys Rev Lett. 2000 Mar 20;84(12):2722-5 - PubMed
  16. Phys Rev Lett. 2007 Oct 12;99(15):153602 - PubMed
  17. Phys Rev A Gen Phys. 1989 Jul 15;40(2):913-923 - PubMed
  18. Opt Express. 2008 May 12;16(10):7369-81 - PubMed
  19. Phys Rev Lett. 2008 Jun 6;100(22):223601 - PubMed
  20. Phys Rev Lett. 2007 Apr 13;98(15):153601 - PubMed

Publication Types