Display options
Share it on

Appl Environ Microbiol. 1979 Mar;37(3):537-43. doi: 10.1128/aem.37.3.537-543.1979.

Comparison of maintenance energy expenditures and growth yields among several rumen bacteria grown on continuous culture.

Applied and environmental microbiology

J B Russell, R L Baldwin

Affiliations

  1. Department of Animal Science, University of California, Davis, Davis, California 95616.

PMID: 16345359 PMCID: PMC243251 DOI: 10.1128/aem.37.3.537-543.1979

Abstract

Maintenance energy expenditures were mesured for five rumen bacteria, Selenomonas ruminantium, Butyrivibrio fibrisolvens, Bacteroides ruminicola, Megasphaera elsdenii, and Streptococcus bovis, by using a complex medium with glucose as the carbon source. Large differences (as high as 8.5-fold) in maintenance energy expenditures were seen among these bacteria. The suggestion is made that maintenance requirements could be a significant determinant of bacterial competition in the rumen. Theoretical maximum growth yields, calculated from double reciprocal plots of yield versus dilution rate, were compared to theoretical Y(ATP) values in order to estimate minimum molar adenosine 5'-triphosphate yields from glucose for each bacterium. Results showed that relative yield among the bacteria was growth rate dependent. At high dilution rates, both S. ruminantium and S. bovis produced lactate as their principal fermentation product. At lower dilution rates very little lactate was formed and growth yields increased. Acetate and ethanol were the predominant fermentation products of S. bovis at low dilution rates. Other workers have shown that S. ruminantium produces acetate and propionate at low growth rates.

References

  1. J Gen Microbiol. 1960 Dec;23:457-69 - PubMed
  2. Antonie Van Leeuwenhoek. 1973;39(3):545-65 - PubMed
  3. Appl Environ Microbiol. 1979 Mar;37(3):531-6 - PubMed
  4. Arch Microbiol. 1976 Dec 1;111(1-2):21-3 - PubMed
  5. Arch Microbiol. 1977 Jun 20;113(3):185-9 - PubMed
  6. J Bacteriol. 1975 Sep;123(3):1076-87 - PubMed
  7. Biochim Biophys Acta. 1973 Feb 12;301(1):53-70 - PubMed
  8. J Gen Microbiol. 1956 Jul;14(3):601-22 - PubMed
  9. J Bacteriol. 1956 Aug;72(2):162-7 - PubMed
  10. J Bacteriol. 1962 Oct;84:605-14 - PubMed
  11. Science. 1950 Dec 15;112(2920):715-6 - PubMed
  12. Appl Environ Microbiol. 1978 Aug;36(2):319-29 - PubMed
  13. Biochem J. 1942 Dec;36(10-12):790-1 - PubMed
  14. Arch Microbiol. 1976 Mar 19;107(2):215-21 - PubMed
  15. Proc R Soc Lond B Biol Sci. 1965 Oct 12;163(991):224-31 - PubMed
  16. Appl Microbiol. 1966 Sep;14(5):794-801 - PubMed
  17. Appl Microbiol. 1975 Dec;30(6):916-21 - PubMed
  18. Arch Microbiol. 1975 Dec 31;106(3):251-8 - PubMed
  19. Arch Microbiol. 1975 Mar 10;102(3):187-92 - PubMed
  20. J Dairy Sci. 1975 Nov;58(11):1645-59 - PubMed
  21. J Bacteriol. 1964 Jun;87:1304-8 - PubMed

Publication Types