Display options
Share it on

Int J Mol Sci. 2008 Jun;9(6):1008-23. doi: 10.3390/ijms9061008. Epub 2008 Jun 20.

Effective DNA inhibitors of cathepsin g by in vitro selection.

International journal of molecular sciences

Barbara Gatto, Elena Vianini, Lorena Lucatello, Claudia Sissi, Danilo Moltrasio, Rodolfo Pescador, Roberto Porta, Manlio Palumbo

Affiliations

  1. Department of Pharmaceutical Sciences, University of Padova, Italy. [email protected]

PMID: 19325843 PMCID: PMC2658781 DOI: 10.3390/ijms9061008

Abstract

Cathepsin G (CatG) is a chymotrypsin-like protease released upon degranulation of neutrophils. In several inflammatory and ischaemic diseases the impaired balance between CatG and its physiological inhibitors leads to tissue destruction and platelet aggregation. Inhibitors of CatG are suitable for the treatment of inflammatory diseases and procoagulant conditions. DNA released upon the death of neutrophils at injury sites binds CatG. Moreover, short DNA fragments are more inhibitory than genomic DNA. Defibrotide, a single stranded polydeoxyribonucleotide with antithrombotic effect is also a potent CatG inhibitor. Given the above experimental evidences we employed a selection protocol to assess whether DNA inhibition of CatG may be ascribed to specific sequences present in defibrotide DNA. A Selex protocol was applied to identify the single-stranded DNA sequences exhibiting the highest affinity for CatG, the diversity of a combinatorial pool of oligodeoxyribonucleotides being a good representation of the complexity found in defibrotide. Biophysical and biochemical studies confirmed that the selected sequences bind tightly to the target enzyme and also efficiently inhibit its catalytic activity. Sequence analysis carried out to unveil a motif responsible for CatG recognition showed a recurrence of alternating TG repeats in the selected CatG binders, adopting an extended conformation that grants maximal interaction with the highly charged protein surface. This unprecedented finding is validated by our results showing high affinity and inhibition of CatG by specific DNA sequences of variable length designed to maximally reduce pairing/folding interactions.

Keywords: CatG: Cathepsin G; Cathepsin G; PCR: polymerase chain reaction; SPR: Surface Plasmon Resonance; Selex; Selex: Systematic evolution of ligands by exponential enrichment; TG repeats; alternating polynucleotides; defibrotide; ssDNA: single strand DNA; PAGE: Polyacrilamide gel electrophoresis

References

  1. J Biol Chem. 2000 Feb 11;275(6):3787-92 - PubMed
  2. FEBS Lett. 1995 Mar 20;361(2-3):265-8 - PubMed
  3. J Biol Chem. 1979 May 25;254(10):4027-32 - PubMed
  4. Nature. 1992 Feb 6;355(6360):564-6 - PubMed
  5. Science. 1990 Aug 3;249(4968):505-10 - PubMed
  6. Nucleic Acids Res. 2003 Jul 1;31(13):3406-15 - PubMed
  7. J Vasc Surg. 1994 Feb;19(2):306-18; discussion 318-9 - PubMed
  8. Methods Enzymol. 1990;183:63-98 - PubMed
  9. J Biol Chem. 1994 Nov 25;269(47):29502-8 - PubMed
  10. Anal Chem. 2004 Feb 15;76(4):1015-20 - PubMed
  11. Biol Chem Hoppe Seyler. 1988 Jul;369(7):573-8 - PubMed
  12. J Biol Chem. 1980 May 10;255(9):3931-4 - PubMed
  13. Semin Thromb Hemost. 1989 Apr;15(2):226-9 - PubMed
  14. FEBS Lett. 2003 Feb 27;537(1-3):23-9 - PubMed
  15. J Biol Chem. 1995 Jan 20;270(3):1408-15 - PubMed
  16. EMBO J. 1996 Oct 15;15(20):5481-91 - PubMed
  17. Proc Natl Acad Sci U S A. 1982 Nov;79(21):6465-9 - PubMed
  18. J Clin Invest. 1990 May;85(5):1343-52 - PubMed
  19. Bioorg Med Chem. 2001 Oct;9(10):2543-8 - PubMed
  20. Mol Cell Biol. 1984 Dec;4(12):2610-21 - PubMed
  21. Blood. 2002 Dec 15;100(13):4337-43 - PubMed
  22. Thromb Haemost. 2005 Jul;94(1):4-16 - PubMed
  23. Am Rev Respir Dis. 1990 Jul;142(1):57-62 - PubMed
  24. J Med Chem. 2004 Feb 12;47(4):769-87 - PubMed
  25. Trends Biochem Sci. 1998 Oct;23(10):403-5 - PubMed
  26. Biochemistry. 1999 Jun 29;38(26):8451-7 - PubMed
  27. Semin Thromb Hemost. 1996;22 Suppl 1:71-5 - PubMed
  28. Biochem J. 1996 Nov 1;319 ( Pt 3):873-9 - PubMed
  29. Thromb Haemost. 1992 Jun 1;67(6):660-4 - PubMed
  30. Biochem J. 1996 Jan 15;313 ( Pt 2):555-60 - PubMed
  31. J Immunol. 1991 Jun 1;146(11):4031-40 - PubMed
  32. Anticancer Agents Med Chem. 2006 Jul;6(4):287-301 - PubMed
  33. J Immunol. 1989 Nov 1;143(9):2961-8 - PubMed
  34. Biochemistry. 1996 Dec 3;35(48):15383-90 - PubMed
  35. Biochemistry. 1998 Nov 17;37(46):16416-22 - PubMed
  36. Thromb Haemost. 2000 May;83(5):672-7 - PubMed
  37. Nucleic Acids Res. 1985 Nov 25;13(22):8181-96 - PubMed
  38. Eur J Pharmacol. 1992 Jun 17;216(3):401-5 - PubMed
  39. Eur J Clin Pharmacol. 1992;42(4):379-83 - PubMed
  40. Nucleic Acids Res. 1997 Dec 15;25(24):4876-82 - PubMed
  41. FEBS Lett. 2000 May 12;473(2):154-6 - PubMed

Publication Types